w3resource

Pandas DataFrame: merge() function

DataFrame - merge() function

The merge() function is used to merge DataFrame or named Series objects with a database-style join.

The join is done on columns or indexes. If joining columns on columns, the DataFrame indexes will be ignored. Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on.

Syntax:

DataFrame.merge(self, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True, indicator=False, validate=None

Parameters:

Name Description Type/Default Value Required / Optional
right            Object to merge with. DataFrame or named Series Required
how     Type of merge to be performed.
  • left: use only keys from left frame, similar to a SQL left outer join; preserve key order.
  • right: use only keys from right frame, similar to a SQL right outer join; preserve key order.
  • outer: use union of keys from both frames, similar to a SQL full outer join; sort keys lexicographically.
  • inner: use intersection of keys from both frames, similar to a SQL inner join; preserve the order of the left keys.
{'left', 'right', 'outer', 'inner'}
Default Value: 'inner'
Required
on   Column or index level names to join on. These must be found in both DataFrames. If on is None and not merging on indexes then this defaults to the intersection of the columns in both DataFrames. label or list Required
left_on  Column or index level names to join on in the left DataFrame. Can also be an array or list of arrays of the length of the left DataFrame. These arrays are treated as if they are columns. label or list, or array-like Required
right_on  Column or index level names to join on in the right DataFrame. Can also be an array or list of arrays of the length of the right DataFrame. These arrays are treated as if they are columns. label or list, or array-like Required
left_index   Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either the index or a number of columns) must match the number of levels. bool
Default Value: False
Required
right_index  Use the index from the right DataFrame as the join key. Same caveats as left_index. bool
Default Value: False
Required
sort  Sort the join keys lexicographically in the result DataFrame. If False, the order of the join keys depends on the join type (how keyword). bool
Default Value: False
Required
suffixes  Suffix to apply to overlapping column names in the left and right side, respectively. To raise an exception on overlapping columns use (False, False).  tuple of (str, str)
Default Value: (‘_x’, ‘_y’)
Required
copy If False, avoid copy if possible. bool
Default Value: True
Required
indicator  If True, adds a column to output DataFrame called "_merge" with information on the source of each row. If string, column with information on source of each row will be added to output DataFrame, and column will be named value of string. Information column is Categorical-type and takes on a value of "left_only" for observations whose merge key only appears in 'left' DataFrame, "right_only" for observations whose merge key only appears in 'right' DataFrame, and "both" if the observation's merge key is found in both. bool or str
Default Value: False
Required
validate  If specified, checks if merge is of specified type.
  • "one_to_one" or "1:1": check if merge keys are unique in both left and right datasets.
  • "one_to_many" or "1:m": check if merge keys are unique in left dataset.
  • "many_to_one" or "m:1": check if merge keys are unique in right dataset.
  • "many_to_many" or "m:m": allowed, but does not result in checks.
str
optional

Returns: DataFrame
A DataFrame of the two merged objects.

Example:


Download the Pandas DataFrame Notebooks from here.

Previous: DataFrame - join() function
Next: DataFrame - update() function



Follow us on Facebook and Twitter for latest update.