w3resource

Pandas DataFrame: stack() function

DataFrame - stack() function

The stack() function is used to stack the prescribed level(s) from columns to index.

Return a reshaped DataFrame or Series having a multi-level index with one or more new inner-most levels compared to the current DataFrame. The new inner-most levels are created by pivoting the columns of the current dataframe:

  • if the columns have a single level, the output is a Series;
  • if the columns have multiple levels, the new index level(s) is (are) taken from the prescribed level(s) and the output is a DataFrame.

The new index levels are sorted.

Syntax:

DataFrame.stack(self, level=-1, dropna=True)

Parameters:

Name Description Type/Default Value Required / Optional
level          Level(s) to stack from the column axis onto the index axis, defined as one index or label, or a list of indices or labels. int, str, list
Default Value: 1
Required
dropna  Whether to drop rows in the resulting Frame/Series with missing values. Stacking a column level onto the index axis can create combinations of index and column values that are missing from the original dataframe.  bool
Default Value: True
Required

Returns: DataFrame or Series
Stacked dataframe or series.

Example:


Download the Pandas DataFrame Notebooks from here.

Previous: DataFrame - nsmallest() function
Next: DataFrame - unstack() function



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://w3resource.com/pandas/dataframe/dataframe-stack.php