Pandas DataFrame: pivot_table() function
DataFrame - pivot_table() function
The pivot_table() function is used to create a spreadsheet-style pivot table as a DataFrame. The levels in the pivot table will be stored in MultiIndex objects (hierarchical indexes) on the index and columns of the result DataFrame.
Syntax:
DataFrame.pivot_table(self, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All', observed=False)
Parameters:
Name | Description | Type/Default Value | Required / Optional |
---|---|---|---|
values | column to aggregate | Optional | |
index | If an array is passed, it must be the same length as the data. The list can contain any of the other types (except list). Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values. | column, Grouper, array, or list of the previous | Required |
columns | If an array is passed, it must be the same length as the data. The list can contain any of the other types (except list). Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values. | column, Grouper, array, or list of the previous | Required |
aggfunc | If list of functions passed, the resulting pivot table will have hierarchical columns whose top level are the function names (inferred from the function objects themselves) If dict is passed, the key is column to aggregate and value is function or list of functions | function, list of functions, dict, Default Value: numpy.mean |
Required |
fill_value | Value to replace missing values with | scalar Default Value: None |
Required |
margins | Add all row / columns (e.g. for subtotal / grand totals) | boolean Default Value: False |
Required |
dropna | Do not include columns whose entries are all NaN | boolean Default Value: True |
Required |
margins_name | Name of the row / column that will contain the totals when margins is True. | string Default Value: ‘All’ |
Required |
observed | This only applies if any of the groupers are Categoricals. If True: only show observed values for categorical groupers. If False: show all values for categorical groupers. | boolean Default Value: False |
Required |
Returns: DataFrame
Example:
Download the Pandas DataFrame Notebooks from here.
Previous: DataFrame - pivot() function
Next: DataFrame - sort_values() function
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics