w3resource

Inserting the result of a query in another table

All the rows or some rows of another table can also be inserted into the table using INSERT INTO statement. The rows of another table will be fetched based on one or more criteria using SQL SELECT statement.

Example:

Sample table: agents
+------------+----------------------+--------------------+------------+-----------------+---------+
| AGENT_CODE | AGENT_NAME           | WORKING_AREA       | COMMISSION | PHONE_NO        | COUNTRY |
+------------+----------------------+--------------------+------------+-----------------+---------+
| A007       | Ramasundar           | Bangalore          |       0.15 | 077-25814763    |         |
| A003       | Alex                 | London             |       0.13 | 075-12458969    |         |
| A008       | Alford               | New York           |       0.12 | 044-25874365    |         |
| A011       | Ravi Kumar           | Bangalore          |       0.15 | 077-45625874    |         |
| A010       | Santakumar           | Chennai            |       0.14 | 007-22388644    |         |
| A012       | Lucida               | San Jose           |       0.12 | 044-52981425    |         |
| A005       | Anderson             | Brisban            |       0.13 | 045-21447739    |         |
| A001       | Subbarao             | Bangalore          |       0.14 | 077-12346674    |         |
| A002       | Mukesh               | Mumbai             |       0.11 | 029-12358964    |         |
| A006       | McDen                | London             |       0.15 | 078-22255588    |         |
| A004       | Ivan                 | Torento            |       0.15 | 008-22544166    |         |
| A009       | Benjamin             | Hampshair          |       0.11 | 008-22536178    |         |
+------------+----------------------+--------------------+------------+-----------------+---------+
Sample table: agentbangalore
+------------+----------------------+--------------------+------------+-----------------+---------+
| AGENT_CODE | AGENT_NAME           | WORKING_AREA       | COMMISSION | PHONE_NO        | COUNTRY |
+------------+----------------------+--------------------+------------+-----------------+---------+
| A007       | Ramasundar           | Bangalore          |       0.15 | 077-25814763    |         |
| A003       | Alex                 | London             |       0.13 | 075-12458969    |         |
| A008       | Alford               | New York           |       0.12 | 044-25874365    |         |
| A011       | Ravi Kumar           | Bangalore          |       0.15 | 077-45625874    |         |
| A010       | Santakumar           | Chennai            |       0.14 | 007-22388644    |         |
| A012       | Lucida               | San Jose           |       0.12 | 044-52981425    |         |
| A005       | Anderson             | Brisban            |       0.13 | 045-21447739    |         |
| A001       | Subbarao             | Bangalore          |       0.14 | 077-12346674    |         |
| A002       | Mukesh               | Mumbai             |       0.11 | 029-12358964    |         |
| A006       | McDen                | London             |       0.15 | 078-22255588    |         |
| A004       | Ivan                 | Torento            |       0.15 | 008-22544166    |         |
| A009       | Benjamin             | Hampshair          |       0.11 | 008-22536178    |         |
+------------+----------------------+--------------------+------------+-----------------+---------+

To add records of 'agents' table into 'agentbangalore' table with the following condition -

1. the 'working_area' of 'agents' table must be 'Bangalore',

the following SQL statement can be used:

SQL Code:


-- This SQL code attempts to insert rows into the 'agentbangalore' table by selecting data from the 'agents' table based on a condition.
-- INSERT INTO statement begins
INSERT INTO agentbangalore
-- Specifies the target table 'agentbangalore' where the data will be inserted
SELECT * FROM agents
-- Selects all columns from the 'agents' table
WHERE  working_area="Bangalore";
-- Filters the rows selected from the 'agents' table based on the condition that the 'working_area' column equals "Bangalore"

Explanation:

  • This SQL code aims to insert rows into the 'agentbangalore' table.
  • The INSERT INTO statement specifies the target table 'agentbangalore' where the data will be inserted.
  • The SELECT statement is used to retrieve data from the 'agents' table.
  • The '*' wildcard is used to select all columns from the 'agents' table.
  • The WHERE clause filters the rows selected from the 'agents' table based on the condition that the 'working_area' column equals "Bangalore".
  • Only the rows meeting this condition will be inserted into the 'agentbangalore' table.

Inserting the result of a query in another table with order by

An arranged order of rows (ascending or descending) of one table can also be inserted into another table by the use of SQL SELECT statement along with ORDER BY clause.

Example:

Sample table: agentbangalore
+------------+----------------------+--------------------+------------+-----------------+---------+
| AGENT_CODE | AGENT_NAME           | WORKING_AREA       | COMMISSION | PHONE_NO        | COUNTRY |
+------------+----------------------+--------------------+------------+-----------------+---------+
| A007       | Ramasundar           | Bangalore          |       0.15 | 077-25814763    |         |
| A003       | Alex                 | London             |       0.13 | 075-12458969    |         |
| A008       | Alford               | New York           |       0.12 | 044-25874365    |         |
| A011       | Ravi Kumar           | Bangalore          |       0.15 | 077-45625874    |         |
| A010       | Santakumar           | Chennai            |       0.14 | 007-22388644    |         |
| A012       | Lucida               | San Jose           |       0.12 | 044-52981425    |         |
| A005       | Anderson             | Brisban            |       0.13 | 045-21447739    |         |
| A001       | Subbarao             | Bangalore          |       0.14 | 077-12346674    |         |
| A002       | Mukesh               | Mumbai             |       0.11 | 029-12358964    |         |
| A006       | McDen                | London             |       0.15 | 078-22255588    |         |
| A004       | Ivan                 | Torento            |       0.15 | 008-22544166    |         |
| A009       | Benjamin             | Hampshair          |       0.11 | 008-22536178    |         |
+------------+----------------------+--------------------+------------+-----------------+---------+
Sample table: agents
+------------+----------------------+--------------------+------------+-----------------+---------+
| AGENT_CODE | AGENT_NAME           | WORKING_AREA       | COMMISSION | PHONE_NO        | COUNTRY |
+------------+----------------------+--------------------+------------+-----------------+---------+
| A007       | Ramasundar           | Bangalore          |       0.15 | 077-25814763    |         |
| A003       | Alex                 | London             |       0.13 | 075-12458969    |         |
| A008       | Alford               | New York           |       0.12 | 044-25874365    |         |
| A011       | Ravi Kumar           | Bangalore          |       0.15 | 077-45625874    |         |
| A010       | Santakumar           | Chennai            |       0.14 | 007-22388644    |         |
| A012       | Lucida               | San Jose           |       0.12 | 044-52981425    |         |
| A005       | Anderson             | Brisban            |       0.13 | 045-21447739    |         |
| A001       | Subbarao             | Bangalore          |       0.14 | 077-12346674    |         |
| A002       | Mukesh               | Mumbai             |       0.11 | 029-12358964    |         |
| A006       | McDen                | London             |       0.15 | 078-22255588    |         |
| A004       | Ivan                 | Torento            |       0.15 | 008-22544166    |         |
| A009       | Benjamin             | Hampshair          |       0.11 | 008-22536178    |         |
+------------+----------------------+--------------------+------------+-----------------+---------+

To add records of 'agents' table into 'agentbangalore' table with following conditions -

1. the rows of 'agents' table should be arranged in descending order on 'agent_name' column,

2. the 'working_area' of 'agents' table must be 'Bangalore',

the following SQL statement can be used:

SQL Code:


-- This SQL code attempts to insert sorted rows into the 'agentbangalore' table by selecting data from the 'agents' table based on a condition.
-- INSERT INTO statement begins
INSERT INTO agentbangalore
-- Specifies the target table 'agentbangalore' where the data will be inserted
SELECT * FROM agents
-- Selects all columns from the 'agents' table
WHERE  working_area="Bangalore"
-- Filters the rows selected from the 'agents' table based on the condition that the 'working_area' column equals "Bangalore"
ORDER  BY agent_name DESC;
-- Orders the selected rows in descending order based on the 'agent_name' column

Explanation:

  • This SQL code aims to insert sorted rows into the 'agentbangalore' table.
  • The INSERT INTO statement specifies the target table 'agentbangalore' where the data will be inserted.
  • The SELECT statement is used to retrieve data from the 'agents' table.
  • The '*' wildcard is used to select all columns from the 'agents' table.
  • The WHERE clause filters the rows selected from the 'agents' table based on the condition that the 'working_area' column equals "Bangalore".
  • Only the rows meeting this condition will be inserted into the 'agentbangalore' table.
  • The ORDER BY clause orders the selected rows in descending order based on the 'agent_name' column.
  • As a result, the sorted rows based on the 'agent_name' column will be inserted into the 'agentbangalore' table.

Inserting the result of a query in another table with group by

A group of rows of one table can also be inserted into another table by the use of SQL SELECT statement along with GROUP BY clause.

Example:

Sample table: orders
   ORD_NUM ORD_AMOUNT ADVANCE_AMOUNT ORD_DATE  CUST_CODE       AGENT_CODE      ORD_DESCRIPTION
---------- ---------- -------------- --------- --------------- --------------- -----------------
    200114       3500           2000 15-AUG-08 C00002          A008
    200122       2500            400 16-SEP-08 C00003          A004
    200118        500            100 20-JUL-08 C00023          A006
    200119       4000            700 16-SEP-08 C00007          A010
    200121       1500            600 23-SEP-08 C00008          A004
    200130       2500            400 30-JUL-08 C00025          A011
    200134       4200           1800 25-SEP-08 C00004          A005
    200108       4000            600 15-FEB-08 C00008          A004
    200103       1500            700 15-MAY-08 C00021          A005
    200105       2500            500 18-JUL-08 C00025          A011
    200109       3500            800 30-JUL-08 C00011          A010
    200101       3000           1000 15-JUL-08 C00001          A008
    200111       1000            300 10-JUL-08 C00020          A008
    200104       1500            500 13-MAR-08 C00006          A004
    200106       2500            700 20-APR-08 C00005          A002
    200125       2000            600 10-OCT-08 C00018          A005
    200117        800            200 20-OCT-08 C00014          A001
    200123        500            100 16-SEP-08 C00022          A002
    200120        500            100 20-JUL-08 C00009          A002
    200116        500            100 13-JUL-08 C00010          A009
    200124        500            100 20-JUN-08 C00017          A007
    200126        500            100 24-JUN-08 C00022          A002
    200129       2500            500 20-JUL-08 C00024          A006
    200127       2500            400 20-JUL-08 C00015          A003
    200128       3500           1500 20-JUL-08 C00009          A002
    200135       2000            800 16-SEP-08 C00007          A010
    200131        900            150 26-AUG-08 C00012          A012
    200133       1200            400 29-JUN-08 C00009          A002
    200100       1000            600 08-JAN-08 C00015          A003
    200110       3000            500 15-APR-08 C00019          A010
    200107       4500            900 30-AUG-08 C00007          A010
    200112       2000            400 30-MAY-08 C00016          A007
    200113       4000            600 10-JUN-08 C00022          A002
    200102       2000            300 25-MAY-08 C00012          A012
Sample table: daysorder
   ORD_NUM ORD_AMOUNT ADVANCE_AMOUNT ORD_DATE  CUST_CODE       AGENT_CODE      ORD_DESCRIPTION
---------- ---------- -------------- --------- --------------- --------------- -----------------
    200114       3500           2000 15-AUG-08 C00002          A008
    200122       2500            400 16-SEP-08 C00003          A004
    200118        500            100 20-JUL-08 C00023          A006
    200119       4000            700 16-SEP-08 C00007          A010
    200121       1500            600 23-SEP-08 C00008          A004
    200130       2500            400 30-JUL-08 C00025          A011
    200134       4200           1800 25-SEP-08 C00004          A005
    200108       4000            600 15-FEB-08 C00008          A004
    200103       1500            700 15-MAY-08 C00021          A005
    200105       2500            500 18-JUL-08 C00025          A011
    200109       3500            800 30-JUL-08 C00011          A010
    200101       3000           1000 15-JUL-08 C00001          A008
    200111       1000            300 10-JUL-08 C00020          A008
    200104       1500            500 13-MAR-08 C00006          A004
    200106       2500            700 20-APR-08 C00005          A002
    200125       2000            600 10-OCT-08 C00018          A005
    200117        800            200 20-OCT-08 C00014          A001
    200123        500            100 16-SEP-08 C00022          A002
    200120        500            100 20-JUL-08 C00009          A002
    200116        500            100 13-JUL-08 C00010          A009
    200124        500            100 20-JUN-08 C00017          A007
    200126        500            100 24-JUN-08 C00022          A002
    200129       2500            500 20-JUL-08 C00024          A006
    200127       2500            400 20-JUL-08 C00015          A003
    200128       3500           1500 20-JUL-08 C00009          A002
    200135       2000            800 16-SEP-08 C00007          A010
    200131        900            150 26-AUG-08 C00012          A012
    200133       1200            400 29-JUN-08 C00009          A002
    200100       1000            600 08-JAN-08 C00015          A003
    200110       3000            500 15-APR-08 C00019          A010
    200107       4500            900 30-AUG-08 C00007          A010
    200112       2000            400 30-MAY-08 C00016          A007
    200113       4000            600 10-JUN-08 C00022          A002
    200102       2000            300 25-MAY-08 C00012          A012

To add records into 'daysorder' table for the columns 'ord_date','ord_amount' and 'advance_amount' from the same columns of 'orders' table with following conditions -

1. the rows of 'orders' table should arranged into a group according to 'ord_date',

2. make a sum of 'ord_amount' for each group,

3. make a sum of 'advance_amount' for each group,

4. data of each group in 'orders' table should be inserted into the 'daysorder' table,

the following SQL statement can be used:

SQL Code:


-- This SQL code attempts to insert aggregated data into the 'daysorder' table by selecting and summarizing data from the 'orders' table.
-- INSERT INTO statement begins
INSERT INTO daysorder (ord_date,ord_amount,advance_amount)
-- Specifies the target table 'daysorder' and the columns where the data will be inserted
SELECT ord_date,SUM(ord_amount),SUM(advance_amount)
-- Selects the 'ord_date' column from the 'orders' table and calculates the sum of 'ord_amount' and 'advance_amount' for each 'ord_date'
FROM orders
-- Specifies the source table 'orders' from which the data will be selected
GROUP BY ord_date;
-- Groups the rows from the 'orders' table by 'ord_date' and calculates the sums for each group

Explanation:

  • This SQL code aims to insert aggregated data into the 'daysorder' table.
  • The INSERT INTO statement specifies the target table 'daysorder' and the columns where the data will be inserted: 'ord_date', 'ord_amount', and 'advance_amount'.
  • The SELECT statement is used to retrieve data from the 'orders' table and perform aggregations.
  • The 'ord_date' column is selected directly, and the SUM() function is used to calculate the sum of 'ord_amount' and 'advance_amount' for each 'ord_date'.
  • The FROM clause specifies the source table 'orders' from which the data will be selected.
  • The GROUP BY clause groups the rows from the 'orders' table by 'ord_date' so that the SUM() function calculates the sums for each group of rows with the same 'ord_date'.
  • As a result, the aggregated data is inserted into the 'daysorder' table with one row for each distinct 'ord_date', along with the sum of 'ord_amount' and 'advance_amount' for that date.

Inserting records using select with group by and order by

In the following we are going to discuss, how records of another table can be inserted using SQL SELECT statement along with ORDER BY and GROUP BY in an INSERT INTO statement.

Example:

Sample table: orders
   ORD_NUM ORD_AMOUNT ADVANCE_AMOUNT ORD_DATE  CUST_CODE       AGENT_CODE      ORD_DESCRIPTION
---------- ---------- -------------- --------- --------------- --------------- -----------------
    200114       3500           2000 15-AUG-08 C00002          A008
    200122       2500            400 16-SEP-08 C00003          A004
    200118        500            100 20-JUL-08 C00023          A006
    200119       4000            700 16-SEP-08 C00007          A010
    200121       1500            600 23-SEP-08 C00008          A004
    200130       2500            400 30-JUL-08 C00025          A011
    200134       4200           1800 25-SEP-08 C00004          A005
    200108       4000            600 15-FEB-08 C00008          A004
    200103       1500            700 15-MAY-08 C00021          A005
    200105       2500            500 18-JUL-08 C00025          A011
    200109       3500            800 30-JUL-08 C00011          A010
    200101       3000           1000 15-JUL-08 C00001          A008
    200111       1000            300 10-JUL-08 C00020          A008
    200104       1500            500 13-MAR-08 C00006          A004
    200106       2500            700 20-APR-08 C00005          A002
    200125       2000            600 10-OCT-08 C00018          A005
    200117        800            200 20-OCT-08 C00014          A001
    200123        500            100 16-SEP-08 C00022          A002
    200120        500            100 20-JUL-08 C00009          A002
    200116        500            100 13-JUL-08 C00010          A009
    200124        500            100 20-JUN-08 C00017          A007
    200126        500            100 24-JUN-08 C00022          A002
    200129       2500            500 20-JUL-08 C00024          A006
    200127       2500            400 20-JUL-08 C00015          A003
    200128       3500           1500 20-JUL-08 C00009          A002
    200135       2000            800 16-SEP-08 C00007          A010
    200131        900            150 26-AUG-08 C00012          A012
    200133       1200            400 29-JUN-08 C00009          A002
    200100       1000            600 08-JAN-08 C00015          A003
    200110       3000            500 15-APR-08 C00019          A010
    200107       4500            900 30-AUG-08 C00007          A010
    200112       2000            400 30-MAY-08 C00016          A007
    200113       4000            600 10-JUN-08 C00022          A002
    200102       2000            300 25-MAY-08 C00012          A012
Sample table: daysorder
   ORD_NUM ORD_AMOUNT ADVANCE_AMOUNT ORD_DATE  CUST_CODE       AGENT_CODE      ORD_DESCRIPTION
---------- ---------- -------------- --------- --------------- --------------- -----------------
    200114       3500           2000 15-AUG-08 C00002          A008
    200122       2500            400 16-SEP-08 C00003          A004
    200118        500            100 20-JUL-08 C00023          A006
    200119       4000            700 16-SEP-08 C00007          A010
    200121       1500            600 23-SEP-08 C00008          A004
    200130       2500            400 30-JUL-08 C00025          A011
    200134       4200           1800 25-SEP-08 C00004          A005
    200108       4000            600 15-FEB-08 C00008          A004
    200103       1500            700 15-MAY-08 C00021          A005
    200105       2500            500 18-JUL-08 C00025          A011
    200109       3500            800 30-JUL-08 C00011          A010
    200101       3000           1000 15-JUL-08 C00001          A008
    200111       1000            300 10-JUL-08 C00020          A008
    200104       1500            500 13-MAR-08 C00006          A004
    200106       2500            700 20-APR-08 C00005          A002
    200125       2000            600 10-OCT-08 C00018          A005
    200117        800            200 20-OCT-08 C00014          A001
    200123        500            100 16-SEP-08 C00022          A002
    200120        500            100 20-JUL-08 C00009          A002
    200116        500            100 13-JUL-08 C00010          A009
    200124        500            100 20-JUN-08 C00017          A007
    200126        500            100 24-JUN-08 C00022          A002
    200129       2500            500 20-JUL-08 C00024          A006
    200127       2500            400 20-JUL-08 C00015          A003
    200128       3500           1500 20-JUL-08 C00009          A002
    200135       2000            800 16-SEP-08 C00007          A010
    200131        900            150 26-AUG-08 C00012          A012
    200133       1200            400 29-JUN-08 C00009          A002
    200100       1000            600 08-JAN-08 C00015          A003
    200110       3000            500 15-APR-08 C00019          A010
    200107       4500            900 30-AUG-08 C00007          A010
    200112       2000            400 30-MAY-08 C00016          A007
    200113       4000            600 10-JUN-08 C00022          A002
    200102       2000            300 25-MAY-08 C00012          A012

To insert records into 'daysorder' table for the columns 'ord_date','ord_amount' and 'advance_amount' from the same columns of 'orders' table with following conditions -

1. the rows of 'orders' table should be arranged into a group according to 'ord_date',

2. the rows of 'orders' table should be arranged in descending order on 'ord_date' column,

3. make a sum of 'ord_amount' for each group ,

4. make a sum of 'advance_amount' for each group ,

5. data of each group in 'orders' table should insert into the 'daysorder' table,

the following SQL statement can be used :

SQL Code:


-- This SQL code attempts to insert aggregated and sorted data into the 'daysorder' table by selecting and summarizing data from the 'orders' table.
-- INSERT INTO statement begins
INSERT INTO daysorder (ord_date,ord_amount,advance_amount)
-- Specifies the target table 'daysorder' and the columns where the data will be inserted
SELECT ord_date,SUM(ord_amount),SUM(advance_amount)
-- Selects the 'ord_date' column from the 'orders' table and calculates the sum of 'ord_amount' and 'advance_amount' for each 'ord_date'
FROM orders 
-- Specifies the source table 'orders' from which the data will be selected
GROUP BY ord_date
-- Groups the rows from the 'orders' table by 'ord_date' and calculates the sums for each group
ORDER BY ord_date DESC
-- Orders the selected rows in descending order based on the 'ord_date' column

Explanation:

  • This SQL code aims to insert aggregated and sorted data into the 'daysorder' table.
  • The INSERT INTO statement specifies the target table 'daysorder' and the columns where the data will be inserted: 'ord_date', 'ord_amount', and 'advance_amount'.
  • The SELECT statement is used to retrieve data from the 'orders' table and perform aggregations.
  • The 'ord_date' column is selected directly, and the SUM() function is used to calculate the sum of 'ord_amount' and 'advance_amount' for each 'ord_date'.
  • The FROM clause specifies the source table 'orders' from which the data will be selected.
  • The GROUP BY clause groups the rows from the 'orders' table by 'ord_date' so that the SUM() function calculates the sums for each group of rows with the same 'ord_date'.
  • The ORDER BY clause orders the selected rows in descending order based on the 'ord_date' column.
  • As a result, the aggregated and sorted data is inserted into the 'daysorder' table, with one row for each distinct 'ord_date', along with the sum of 'ord_amount' and 'advance_amount' for that date.

See our Model Database

Here is a new document which is a collection of questions with short and simple answers, useful for learning SQL as well as for interviews.

Check out our 1000+ SQL Exercises with solution and explanation to improve your skills.

Previous: Insert null
Next: Insert using subqueries



Follow us on Facebook and Twitter for latest update.