w3resource

Pandas Datetime: Timewheel of Hour Vs Year comparison of the top 10 years in which the UFO was sighted

Pandas Datetime: Exercise-25 with Solution

Write a Pandas program to create a Timewheel of Hour Vs Year comparison of the top 10 years in which the UFO was sighted.

Sample Solution:

Python Code:

import pandas as pd
import matplotlib.pyplot as plt
import matplotlib as mpl
import matplotlib.cm as cm
#Source: https://bit.ly/2XDY2XN
df = pd.read_csv(r'ufo.csv')
df['Date_time'] = df['Date_time'].astype('datetime64[ns]')
most_sightings_years = df['Date_time'].dt.year.value_counts().head(10)
def is_top_years(year):
   if year in most_sightings_years.index:
       return year
month_vs_year = df.pivot_table(columns=df['Date_time'].dt.month,index=df['Date_time'].dt.year.apply(is_top_years),aggfunc='count',values='city')
month_vs_year.index = month_vs_year.index.astype(int)
month_vs_year.columns = month_vs_year.columns.astype(int)
print("\nComparison of the top 10 years in which the UFO was sighted vs each month:")
def pie_heatmap(table, cmap='coolwarm_r', vmin=None, vmax=None,inner_r=0.25, pie_args={}):
   n, m = table.shape
   vmin= table.min().min() if vmin is None else vmin
   vmax= table.max().max() if vmax is None else vmax

   centre_circle = plt.Circle((0,0),inner_r,edgecolor='black',facecolor='white',fill=True,linewidth=0.25)
   plt.gcf().gca().add_artist(centre_circle)
   norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)
   cmapper = cm.ScalarMappable(norm=norm, cmap=cmap)

   for i, (row_name, row) in enumerate(table.iterrows()):
       labels = None if i > 0 else table.columns
       wedges = plt.pie([1] * m,radius=inner_r+float(n-i)/n, colors=[cmapper.to_rgba(x) for x in row.values],
           labels=labels, startangle=90, counterclock=False, wedgeprops={'linewidth':-1}, **pie_args)
       plt.setp(wedges[0], edgecolor='grey',linewidth=1.5)
       wedges = plt.pie([1], radius=inner_r+float(n-i-1)/n, colors=['w'], labels=[row_name], startangle=-90, wedgeprops={'linewidth':0})
       plt.setp(wedges[0], edgecolor='grey',linewidth=1.5)
plt.figure(figsize=(8,8))
plt.title("Timewheel of Hour Vs Year",y=1.08,fontsize=30)
pie_heatmap(month_vs_year, vmin=-20,vmax=80,inner_r=0.2)

Sample Output:

Comparison of the top 10 years in which the UFO was sighted vs each month:
C:\Users\User\Anaconda3\lib\site-packages\matplotlib\colors.py:512: RuntimeWarning: invalid value encountered in less
  xa[xa < 0] = -1
Comparison of the top 10 years in which the UFO was sighted vs each month

Python Code Editor:

Have another way to solve this solution? Contribute your code (and comments) through Disqus.

Previous: Write a Pandas program to create a heatmap (rectangular data as a color-encoded matrix) for comparison of the top 10 years in which the UFO was sighted vs each Month.

What is the difficulty level of this exercise?



Follow us on Facebook and Twitter for latest update.

Python: Tips of the Day

F strings:

It is a common practice to add variables inside strings. F strings are by far the coolest way of doing it. To appreciate the f strings more, let's first perform the operation with the format function.

name = 'Owen'
age = 25
print("{} is {} years old".format(name, age))

Output:

Owen is 25 years old

We specify the variables that go inside the curly braces by using the format function at the end. F strings allow for specifying the variables inside the string.

name = 'Owen'
age = 25
print(f"{name} is {age} years old")

Output:

Owen is 25 years old

F strings are easier to follow and type. Moreover, they make the code more readable.

A, B, C = {2, 4, 6}
print(A, B, C)
A, B, C = ['p', 'q', 'r']
print(A, B, C)

Output:

2 4 6
p q r