Pandas Series: sort_values() function
Sort Pandas series in ascending or descending order by some criterion
The sort_values() function is used to sort by the values.
Sort a Series in ascending or descending order by some condition.
Syntax:
Series.sort_values(self, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last')
Parameters:
Name | Description | Type/Default Value | Required / Optional |
---|---|---|---|
axis | Axis to direct sorting. The value ‘index’ is accepted for compatibility with DataFrame.sort_values. | {0 or ‘index’} Default Value: 0 |
Required |
ascending | If True, sort values in ascending order, otherwise descending. | bool Default Value: True |
Required |
inplace | Sort ascending vs. descending. | bool Default Value: True |
Required |
inplace | If True, perform operation in-place. | bool Default Value: False |
Required |
kind | Choice of sorting algorithm. See also numpy.sort() for more information. ‘mergesort’ is the only stable algorithm. | {‘quicksort’, ‘mergesort’ or ‘heapsort’} Default Value: ‘quicksort’ |
Required |
na_position | Argument ‘first’ puts NaNs at the beginning, ‘last’ puts NaNs at the end. | {‘first’ or ‘last’} Default Value: ‘last’ |
Required |
Returns: Series - Series ordered by values.
Example:
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([np.nan, 2, 4, 10, 7])
s
Output:
0 NaN 1 2.0 2 4.0 3 10.0 4 7.0 dtype: float64
Example - Sort values ascending order (default behaviour):
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([np.nan, 2, 4, 10, 7])
s.sort_values(ascending=True)
Output:
1 2.0 2 4.0 4 7.0 3 10.0 0 NaN dtype: float64
Example - Sort values descending order:
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([np.nan, 2, 4, 10, 7])
s.sort_values(ascending=False)
Output:
3 10.0 4 7.0 2 4.0 1 2.0 0 NaN dtype: float64
Example - Sort values inplace:
Python-Pandas Code:
import numpy as np
import pandas as pd
s.sort_values(ascending=False, inplace=True)
s
Output:
3 10.0 4 7.0 2 4.0 1 2.0 0 NaN dtype: float64
Example - Sort values putting NAs first:
Python-Pandas Code:
import numpy as np
import pandas as pd
s.sort_values(ascending=False, inplace=True)
s.sort_values(na_position='first')
Output:
0 NaN 1 2.0 2 4.0 4 7.0 3 10.0 dtype: float64
Example - Sort a series of strings:
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series(['t', 'q', 's', 'p', 'r'])
s
Output:
0 t 1 q 2 s 3 p 4 r dtype: object
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series(['t', 'q', 's', 'p', 'r'])
s.sort_values()
Output:
3 p 1 q 4 r 2 s 0 t dtype: object
Previous: Fill NA/missing values in a Pandas series
Next: Sorts Pandas series by labels along the given axis
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics