w3resource

Pandas Series: sort_values() function

Sort Pandas series in ascending or descending order by some criterion

The sort_values() function is used to sort by the values.

Sort a Series in ascending or descending order by some condition.

Syntax:

Series.sort_values(self, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last')
Pandas Series sort_values image

Parameters:

Name Description Type/Default Value Required / Optional
axis Axis to direct sorting. The value ‘index’ is accepted for compatibility with DataFrame.sort_values.  {0 or ‘index’}
Default Value: 0
Required
ascending If True, sort values in ascending order, otherwise descending. bool
Default Value: True
Required
inplace Sort ascending vs. descending. bool
Default Value: True
Required
inplace If True, perform operation in-place. bool
Default Value: False
Required
kind Choice of sorting algorithm. See also numpy.sort() for more information. ‘mergesort’ is the only stable algorithm. {‘quicksort’, ‘mergesort’ or ‘heapsort’}
Default Value: ‘quicksort’
Required
na_position Argument ‘first’ puts NaNs at the beginning, ‘last’ puts NaNs at the end. {‘first’ or ‘last’}
Default Value: ‘last’
Required

Returns: Series - Series ordered by values.

Example:

Python-Pandas Code:

import numpy as np
import pandas as pd
s = pd.Series([np.nan, 2, 4, 10, 7])
s

Output:

0     NaN
1     2.0
2     4.0
3    10.0
4     7.0
dtype: float64
Pandas Series sort_values image

Example - Sort values ascending order (default behaviour):

Python-Pandas Code:

import numpy as np
import pandas as pd
s = pd.Series([np.nan, 2, 4, 10, 7])
s.sort_values(ascending=True)

Output:

1     2.0
2     4.0
4     7.0
3    10.0
0     NaN
dtype: float64

Example - Sort values descending order:

Python-Pandas Code:

import numpy as np
import pandas as pd
s = pd.Series([np.nan, 2, 4, 10, 7])
s.sort_values(ascending=False)

Output:

3    10.0
4     7.0
2     4.0
1     2.0
0     NaN
dtype: float64

Example - Sort values inplace:

Python-Pandas Code:

import numpy as np
import pandas as pd
s.sort_values(ascending=False, inplace=True)
s

Output:

3    10.0
4     7.0
2     4.0
1     2.0
0     NaN
dtype: float64

Example - Sort values putting NAs first:

Python-Pandas Code:

import numpy as np
import pandas as pd
s.sort_values(ascending=False, inplace=True)
s.sort_values(na_position='first')

Output:

0     NaN
1     2.0
2     4.0
4     7.0
3    10.0
dtype: float64

Example - Sort a series of strings:

Python-Pandas Code:

import numpy as np
import pandas as pd
s = pd.Series(['t', 'q', 's', 'p', 'r'])
s

Output:

0    t
1    q
2    s
3    p
4    r
dtype: object

Python-Pandas Code:

import numpy as np
import pandas as pd
s = pd.Series(['t', 'q', 's', 'p', 'r'])
s.sort_values()

Output:

3    p
1    q
4    r
2    s
0    t
dtype: object

Previous: Fill NA/missing values in a Pandas series
Next: Sorts Pandas series by labels along the given axis



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://w3resource.com/pandas/series/series-sort_values.php