Pandas Series: shift() function
Series shift() function
The shift() function is used to shift index by desired number of periods with an optional time freq.
When freq is not passed, shift the index without realigning the data. If freq is passed (in this case, the index must be date or datetime, or it will raise a NotImplementedError), the index will be increased using the periods and the freq.
Syntax:
Series.shift(self, periods=1, freq=None, axis=0, fill_value=None)
Parameters:
Name | Description | Type/Default Value | Required / Optional |
---|---|---|---|
periods | Number of periods to shift. Can be positive or negative. | int | Required |
freq | Offset to use from the tseries module or time rule (e.g. ‘EOM’). If freq is specified then the index values are shifted but the data is not realigned. That is, use freq if you would like to extend the index when shifting and preserve the original data. | DateOffset, tseries.offsets, timedelta, or str, | Optional |
axis | Shift direction. | {0 or ‘index’, 1 or ‘columns’, None} Default Value: None |
Required |
fill_value | The scalar value to use for newly introduced missing values. the default depends on the dtype of self. For numeric data, np.nan is used. For datetime, timedelta, or period data, etc. NaT is used. For extension dtypes, self.dtype.na_value is used. | object | Optional |
Returns: Series - Copy of input object, shifted.
Example:
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame({'C1': [20, 30, 25, 40, 55],
'C2': [23, 33, 18, 36, 58],
'C3': [27, 37, 21, 47, 62]})
df.shift(periods=3)
Output:
C1 C2 C3 0 NaN NaN NaN 1 NaN NaN NaN 2 NaN NaN NaN 3 20.0 23.0 27.0 4 30.0 33.0 37.0
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame({'C1': [20, 30, 25, 40, 55],
'C2': [23, 33, 18, 36, 58],
'C3': [27, 37, 21, 47, 62]})
df.shift(periods=1, axis='columns')
Output:
C1 C2 C3 0 NaN 20.0 23.0 1 NaN 30.0 33.0 2 NaN 25.0 18.0 3 NaN 40.0 36.0 4 NaN 55.0 58.0
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame({'C1': [20, 30, 25, 40, 55],
'C2': [23, 33, 18, 36, 58],
'C3': [27, 37, 21, 47, 62]})
df.shift(periods=3, fill_value=0)
Output:
C1 C2 C3 0 0 0 0 1 0 0 0 2 0 0 0 3 20 23 27 4 30 33 37
Previous: Get the last row(s) without any NaNs in Pandas series
Next: Resample Pandas time-series data
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics