Pandas Series property: loc
Access a group of rows and columns in Pandas
The loc property is used to access a group of rows and columns by label(s) or a boolean array.
.loc[] is primarily label based, but may also be used with a boolean array.
Allowed inputs are:
- A single label, e.g. 5 or 'a', (note that 5 is interpreted as a label of the index, and never as an integer position along the index).
- A list or array of labels, e.g. ['a', 'b', 'c'].
- A slice object with labels, e.g. 'a':'f'.
- A boolean array of the same length as the axis being sliced, e.g. [True, False, True].
- A callable function with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above)
Syntax:
Series.loc
Raises: KeyError
when any items are not found
Example - Getting values:
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame([[2, 3], [6, 5], [9, 8]],
index=['cobra', 'viper', 'sidewinder'],
columns=['max_speed', 'shield'])
df
Output:
max_speed shield cobra 2 3 viper 6 5 sidewinder 9 8
Example - Single label. Note this returns the row as a Series:
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame([[2, 3], [6, 5], [9, 8]],
index=['cobra', 'viper', 'sidewinder'],
columns=['max_speed', 'shield'])
df.loc['viper']
Output:
max_speed 6 shield 5 Name: viper, dtype: int64
Example - List of labels. Note using [[]] returns a DataFrame:
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame([[2, 3], [6, 5], [9, 8]],
index=['cobra', 'viper', 'sidewinder'],
columns=['max_speed', 'shield'])
df.loc[['viper', 'sidewinder']]
Output:
max_speed shield viper 6 5 sidewinder 9 8
Example - Single label for row and column:
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame([[2, 3], [6, 5], [9, 8]],
index=['cobra', 'viper', 'sidewinder'],
columns=['max_speed', 'shield'])
df.loc['cobra', 'shield']
Output:
3
Slice with labels for row and single label for column. As mentioned above, note that both the start and stop of the slice<br. are included.
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame([[2, 3], [6, 5], [9, 8]],
index=['cobra', 'viper', 'sidewinder'],
columns=['max_speed', 'shield'])
df.loc['cobra':'viper', 'max_speed']
Output:
cobra 2 viper 6 Name: max_speed, dtype: int64
Example - Boolean list with the same length as the row axis:
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame([[2, 3], [6, 5], [9, 8]],
index=['cobra', 'viper', 'sidewinder'],
columns=['max_speed', 'shield'])
df.loc[[False, False, True]]
Output:
max_speed shield sidewinder 9 8
Example - Conditional that returns a boolean Series:
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame([[2, 3], [6, 5], [9, 8]],
index=['cobra', 'viper', 'sidewinder'],
columns=['max_speed', 'shield'])
df.loc[df['shield'] > 6]
Output:
max_speed shield sidewinder 9 8
Example - Conditional that returns a boolean Series with column labels specified:
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame([[2, 3], [6, 5], [9, 8]],
index=['cobra', 'viper', 'sidewinder'],
columns=['max_speed', 'shield'])
df.loc[df['shield'] > 6, ['max_speed']]
Output:
max_speed sidewinder 9
Example - Callable that returns a boolean Series:
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame([[2, 3], [6, 5], [9, 8]],
index=['cobra', 'viper', 'sidewinder'],
columns=['max_speed', 'shield'])
df.loc[lambda df: df['shield'] == 8]
Output:
max_speed shield sidewinder 9 8
Example - Setting values:
Set value for all items matching the list of labels
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame([[2, 3], [6, 5], [9, 8]],
index=['cobra', 'viper', 'sidewinder'],
columns=['max_speed', 'shield'])
df.loc[['viper', 'sidewinder'], ['shield']] = 50
df
Output:
max_speed shield cobra 2 3 viper 6 50 sidewinder 9 50
Example - Set value for an entire row:
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame([[2, 3], [6, 5], [9, 8]],
index=['cobra', 'viper', 'sidewinder'],
columns=['max_speed', 'shield'])
df.loc[['viper', 'sidewinder'], ['shield']] = 50
df.loc['cobra'] = 10
df
Output:
max_speed shield cobra 10 10 viper 6 50 sidewinder 9 50
Example - Set value for an entire column:
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame([[2, 3], [6, 5], [9, 8]],
index=['cobra', 'viper', 'sidewinder'],
columns=['max_speed', 'shield'])
df.loc[['viper', 'sidewinder'], ['shield']] = 50
df.loc[:, 'max_speed'] = 40
df
Output:
max_speed shield cobra 40 10 viper 40 50 sidewinder 40 50
Example - Set value for rows matching callable condition:
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame([[2, 3], [6, 5], [9, 8]],
index=['cobra', 'viper', 'sidewinder'],
columns=['max_speed', 'shield'])
df.loc[['viper', 'sidewinder'], ['shield']] = 50
df.loc[df['shield'] > 25] = 0
df
Output:
max_speed shield cobra 40 10 viper 0 0 sidewinder 0 0
Example - Getting values on a DataFrame with an index that has integer labels:
Another example using integers for the index
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame([[2, 3], [6, 5], [9, 8]],
index=[3, 4, 5], columns=['max_speed', 'shield'])
df
Output:
max_speed shield 3 2 3 4 6 5 5 9 8
Slice with integer labels for rows. As mentioned above, note that both the start and stop of the slice are included.
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame([[2, 3], [6, 5], [9, 8]],
index=[3, 4, 5], columns=['max_speed', 'shield'])
df.loc[3:5]
Output:
max_speed shield 3 2 3 4 6 5 5 9 8
Example - Getting values with a MultiIndex:
A number of examples using a DataFrame with a MultiIndex
Python-Pandas Code:
import numpy as np
import pandas as pd
tuples = [
('cobra', 's1'), ('cobra', 's2'),
('sidewinder', 's1'), ('sidewinder', 's2'),
('viper', 's2'), ('viper', 's3')
]
index = pd.MultiIndex.from_tuples(tuples)
values = [[6, 2], [0, 4], [20, 30],
[1, 4], [5, 1], [36, 56]]
df = pd.DataFrame(values, columns=['max_speed', 'shield'], index=index)
df
Output:
max_speed shield cobra s1 6 2 s2 0 4 sidewinder s1 20 30 s2 1 4 viper s2 5 1 s3 36 56
Example - Single label. Note this returns a DataFrame with a single index:
Python-Pandas Code:
import numpy as np
import pandas as pd
tuples = [
('cobra', 's1'), ('cobra', 's2'),
('sidewinder', 's1'), ('sidewinder', 's2'),
('viper', 's2'), ('viper', 's3')
]
index = pd.MultiIndex.from_tuples(tuples)
values = [[6, 2], [0, 4], [20, 30],
[1, 4], [5, 1], [36, 56]]
df = pd.DataFrame(values, columns=['max_speed', 'shield'], index=index)
df.loc['cobra']
Output:
max_speed shield s1 6 2 s2 0 4
Example - Single index tuple. Note this returns a Series:
Python-Pandas Code:
import numpy as np
import pandas as pd
tuples = [
('cobra', 's1'), ('cobra', 's2'),
('sidewinder', 's1'), ('sidewinder', 's2'),
('viper', 's2'), ('viper', 's3')
]
index = pd.MultiIndex.from_tuples(tuples)
values = [[6, 2], [0, 4], [20, 30],
[1, 4], [5, 1], [36, 56]]
df = pd.DataFrame(values, columns=['max_speed', 'shield'], index=index)
df.loc[('cobra', 's2')]
Output:
max_speed 0 shield 4 Name: (cobra, s2), dtype: int64
Example - Single label for row and column. Similar to passing in a tuple, this returns a Series:
Python-Pandas Code:
import numpy as np
import pandas as pd
tuples = [
('cobra', 's1'), ('cobra', 's2'),
('sidewinder', 's1'), ('sidewinder', 's2'),
('viper', 's2'), ('viper', 's3')
]
index = pd.MultiIndex.from_tuples(tuples)
values = [[6, 2], [0, 4], [20, 30],
[1, 4], [5, 1], [36, 56]]
df = pd.DataFrame(values, columns=['max_speed', 'shield'], index=index)
df.loc['cobra', 's1']
Output:
max_speed 6 shield 2 Name: (cobra, s1), dtype: int64
Example - Single tuple. Note using [[]] returns a DataFrame:
Python-Pandas Code:
import numpy as np
import pandas as pd
tuples = [
('cobra', 's1'), ('cobra', 's2'),
('sidewinder', 's1'), ('sidewinder', 's2'),
('viper', 's2'), ('viper', 's3')
]
index = pd.MultiIndex.from_tuples(tuples)
values = [[6, 2], [0, 4], [20, 30],
[1, 4], [5, 1], [36, 56]]
df = pd.DataFrame(values, columns=['max_speed', 'shield'], index=index)
df.loc[[('cobra', 's2')]]
Output:
max_speed shield cobra s2 0 4
Example - Single tuple for the index with a single label for the column:
Python-Pandas Code:
import numpy as np
import pandas as pd
tuples = [
('cobra', 's1'), ('cobra', 's2'),
('sidewinder', 's1'), ('sidewinder', 's2'),
('viper', 's2'), ('viper', 's3')
]
index = pd.MultiIndex.from_tuples(tuples)
values = [[6, 2], [0, 4], [20, 30],
[1, 4], [5, 1], [36, 56]]
df = pd.DataFrame(values, columns=['max_speed', 'shield'], index=index)
df.loc[('cobra', 's1'), 'shield']
Output:
2
Example - Slice from index tuple to single label:
Python-Pandas Code:
import numpy as np
import pandas as pd
tuples = [
('cobra', 's1'), ('cobra', 's2'),
('sidewinder', 's1'), ('sidewinder', 's2'),
('viper', 's2'), ('viper', 's3')
]
index = pd.MultiIndex.from_tuples(tuples)
values = [[6, 2], [0, 4], [20, 30],
[1, 4], [5, 1], [36, 56]]
df = pd.DataFrame(values, columns=['max_speed', 'shield'], index=index)
df.loc[('cobra', 's1'):'viper']
Output:
max_speed shield cobra s1 6 2 s2 0 4 sidewinder s1 20 30 s2 1 4 viper s2 5 1 s3 36 56
Example - Slice from index tuple to index tuple:
Python-Pandas Code:
import numpy as np
import pandas as pd
tuples = [
('cobra', 's1'), ('cobra', 's2'),
('sidewinder', 's1'), ('sidewinder', 's2'),
('viper', 's2'), ('viper', 's3')
]
index = pd.MultiIndex.from_tuples(tuples)
values = [[6, 2], [0, 4], [20, 30],
[1, 4], [5, 1], [36, 56]]
df = pd.DataFrame(values, columns=['max_speed', 'shield'], index=index)
df.loc[('cobra', 's1'):('viper', 's2')]
Output:
max_speed shield cobra s1 6 2 s2 0 4 sidewinder s1 20 30 s2 1 4 viper s2 5 1
Previous: Access a single value for a row/column pair in Pandas
Next: Access a group of rows and columns in Pandas
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://w3resource.com/pandas/series/series-loc.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics