w3resource

Pandas DataFrame: where() function

DataFrame - where() function

The where() function is used to replace values where the condition is False.

Syntax:

DataFrame.where(self, cond, other=nan, inplace=False, axis=None, level=None, errors='raise', try_cast=False)

Parameters:

Name Description Type/Default Value Required / Optional
cond 

Where cond is True, keep the original value. Where False, replace with corresponding value from other. If cond is callable, it is computed on the Series/DataFrame and should return boolean Series/DataFrame or array. The callable must not change input Series/DataFrame (though pandas doesn’t check it).


boolean Series/DataFrame, array-like, or callable Required
other 

Entries where cond is False are replaced with corresponding value from other. If other is callable, it is computed on the Series/DataFrame and should return scalar or Series/DataFrame. The callable must not change input Series/DataFrame (though pandas doesn’t check it).


scalar, Series/DataFrame, or callable Required
inplace  Whether to perform the operation in place on the data. bool
Default Value: False
Required
axis  Alignment axis if needed. int
Default Value: None
Required
level  Alignment level if needed. int
Default Value: None
Required
errors  Note that currently this parameter won’t affect the results and will always coerce to a suitable dtype.
  • ‘raise’ : allow exceptions to be raised.
  • ‘ignore’ : suppress exceptions. On error return original object.
str, {‘raise’, ‘ignore’}
Default Value: ‘raise’
Required
try_cast  Try to cast the result back to the input type (if possible). bool
Default Value: False
Required

Returns: Same type as caller

Notes

The where method is an application of the if-then idiom. For each element in the calling DataFrame, if cond is True the element is used; otherwise the corresponding element from the DataFrame other is used.

The signature for DataFrame.where() differs from numpy.where(). Roughly df1.where(m, df2) is equivalent to np.where(m, df1, df2).

Example:


Download the Pandas DataFrame Notebooks from here.

Previous: DataFrame - isin() function
Next: DataFrame - mask() function



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://w3resource.com/pandas/dataframe/dataframe-where.php