Pandas DataFrame: to_sql() function
DataFrame - to_sql() function
The to_sql() function is used to write records stored in a DataFrame to a SQL database.
Syntax:
DataFrame.to_sql(self, name, con, schema=None, if_exists='fail', index=True, index_label=None, chunksize=None, dtype=None, method=None)
Parameters:
Name | Description | Type / Default Value | Required / Optional |
---|---|---|---|
name | Name of SQL table. | string | Required |
con | Using SQLAlchemy makes it possible to use any DB supported by that library. Legacy support is provided for sqlite3.Connection objects. | sqlalchemy.engine.Engine or sqlite3.Connection | Required |
schema | Specify the schema (if database flavor supports this). If None, use default schema. |
string | Optional |
if_exists | How to behave if the table already exists.
|
{'fail', 'replace', 'append'} Default Value: 'fail' |
Required |
index | Write DataFrame index as a column. Uses index_label as the column name in the table. | bool Default Value: True |
Required |
index_label | Column label for index column(s). If None is given (default) and index is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. | string or sequence Default Value: None |
Required |
chunksize | Rows will be written in batches of this size at a time. By default, all rows will be written at once. | int | Optional |
dtype | Specifying the datatype for columns. The keys should be the column names and the values should be the SQLAlchemy types or strings for the sqlite3 legacy mode. | dict | Optional |
method | Controls the SQL insertion clause used:
Details and a sample callable implementation can be found in the section insert method |
{None, 'multi', callable} Default Value: None |
Required |
Raises: ValueError
When the table already exists and if_exists is 'fail' (the default).
Notes:
Timezone aware datetime columns will be written as Timestamp with timezone type with SQLAlchemy if supported by the database. Otherwise, the datetimes will be stored as timezone unaware timestamps local to the original timezone.
Example:
Download the Pandas DataFrame Notebooks from here.
Previous: DataFrame - to_hdf() function
Next: DataFrame - to_dict() function
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics