Pandas DataFrame: rpow() function
DataFrame - rpow() function
The rpow() function returns exponential power of dataframe and other, element-wise.
Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
Syntax:DataFrame.rpow(self, other, axis='columns', level=None, fill_value=None)
Parameters:
Name | Description | Type/Default Value | Required / Optional |
---|---|---|---|
other | Any single or multiple element data structure, or list-like object. | scalar, sequence, Series, or DataFrame | Required |
axis | Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’). For Series input, axis to match Series index on. | {0 or ‘index’, 1 or ‘columns’} | Required |
level | Broadcast across a level, matching Index values on the passed MultiIndex level. | int or label | Required |
fill_value | Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing. | float or None Default Value: None |
Required |
Returns: DataFrame
Result of the arithmetic operation.
Notes:
Mismatched indices will be unioned together.
Example:
Download the Pandas DataFrame Notebooks from here.
Previous: DataFrame - rmod() function
Next: DataFrame - lt() function
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics