w3resource

Pandas DataFrame: rpow() function

DataFrame - rpow() function

The rpow() function returns exponential power of dataframe and other, element-wise.

Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.

Syntax:

DataFrame.rpow(self, other, axis='columns', level=None, fill_value=None)

Parameters:

Name Description Type/Default Value Required / Optional
other     Any single or multiple element data structure, or list-like object. scalar, sequence, Series, or DataFrame Required
axis  Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’). For Series input, axis to match Series index on. {0 or ‘index’, 1 or ‘columns’} Required
level  Broadcast across a level, matching Index values on the passed MultiIndex level. int or label Required
fill_value  Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing. float or None
Default Value: None
Required

Returns: DataFrame
Result of the arithmetic operation.

Notes:

Mismatched indices will be unioned together.

Example:


Download the Pandas DataFrame Notebooks from here.

Previous: DataFrame - rmod() function
Next: DataFrame - lt() function



Follow us on Facebook and Twitter for latest update.