NumPy Logic functions: isinf() function
numpy.isinf() function
The isinf() function is used to test element-wise for positive or negative infinity.
Returns a boolean array of the same shape as x, True where x == +/-inf, otherwise False.
Syntax:
numpy.isinf(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'isinf'>
Version: 1.15.0
Parameter:
Name | Description | Required / Optional |
---|---|---|
x | Input values array_like |
Required |
out | A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. ndarray, None, or tuple of ndarray and None |
Optional |
where | Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. array_like |
Optional |
**kwargs | For other keyword-only arguments | Required |
Returns:
y : bool (scalar) or boolean ndarray - True where x is positive or negative infinity, false otherwise. This is a scalar if x is a scalar.
Notes:
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754).
Errors result if the second argument is supplied when the first argument is a scalar, or if the first and second arguments have different shapes.
NumPy.isinf() method Example-1:
>>> import numpy as np
>>> np.isinf(np.inf)
Output:
True
NumPy.isinf() method Example-2:
>>> import numpy as np
>>> np.isinf(np.nan)
Output:
False
NumPy.isinf() method Example-3:
>>> import numpy as np
>>> np.isinf(np.NINF)
Output:
True
NumPy.isinf() method Example-4:
>>> import numpy as np
>>> np.isinf([np.inf, -np.inf, 1.0, np.nan])
Output:
array([ True, True, False, False])
NumPy.isinf() method Example-5:
>>> x = np.array([-np.inf, 0., np.inf])
>>> y = np.array([3, 3, 3])
>>> np.isinf(x, y)
Output:
array([1, 0, 1])
NumPy.isinf() method Example-6:
>>> x = np.array([-np.inf, 0., np.inf])
>>> y = np.array([3, 3, 3])
>>> np.isinf(x, y)
>>> y
Output:
array([1, 0, 1])
Python - NumPy Code Editor:
Previous: isfinite() function
Next: isnan() function
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics