SQL exercises on movie Database: Generate a report which contain the columns movie title, name of the female actor, year of the movie, role, movie genres, the director, date of release, and rating of that movie
24. From the following tables, write a query in SQL to generate a report, which contain the fields movie title, name of the female actor, year of the movie, role, movie genres, the director, date of release, and rating of that movie.
Sample table: moviemov_id | mov_title | mov_year | mov_time | mov_lang | mov_dt_rel | mov_rel_country --------+----------------------------------------------------+----------+----------+-----------------+------------+----------------- 901 | Vertigo | 1958 | 128 | English | 1958-08-24 | UK 902 | The Innocents | 1961 | 100 | English | 1962-02-19 | SW 903 | Lawrence of Arabia | 1962 | 216 | English | 1962-12-11 | UK 904 | The Deer Hunter | 1978 | 183 | English | 1979-03-08 | UK 905 | Amadeus | 1984 | 160 | English | 1985-01-07 | UK 906 | Blade Runner | 1982 | 117 | English | 1982-09-09 | UK 907 | Eyes Wide Shut | 1999 | 159 | English | | UK 908 | The Usual Suspects | 1995 | 106 | English | 1995-08-25 | UK 909 | Chinatown | 1974 | 130 | English | 1974-08-09 | UK 910 | Boogie Nights | 1997 | 155 | English | 1998-02-16 | UK 911 | Annie Hall | 1977 | 93 | English | 1977-04-20 | USA 912 | Princess Mononoke | 1997 | 134 | Japanese | 2001-10-19 | UK 913 | The Shawshank Redemption | 1994 | 142 | English | 1995-02-17 | UK 914 | American Beauty | 1999 | 122 | English | | UK 915 | Titanic | 1997 | 194 | English | 1998-01-23 | UK 916 | Good Will Hunting | 1997 | 126 | English | 1998-06-03 | UK 917 | Deliverance | 1972 | 109 | English | 1982-10-05 | UK 918 | Trainspotting | 1996 | 94 | English | 1996-02-23 | UK 919 | The Prestige | 2006 | 130 | English | 2006-11-10 | UK 920 | Donnie Darko | 2001 | 113 | English | | UK 921 | Slumdog Millionaire | 2008 | 120 | English | 2009-01-09 | UK 922 | Aliens | 1986 | 137 | English | 1986-08-29 | UK 923 | Beyond the Sea | 2004 | 118 | English | 2004-11-26 | UK 924 | Avatar | 2009 | 162 | English | 2009-12-17 | UK 926 | Seven Samurai | 1954 | 207 | Japanese | 1954-04-26 | JP 927 | Spirited Away | 2001 | 125 | Japanese | 2003-09-12 | UK 928 | Back to the Future | 1985 | 116 | English | 1985-12-04 | UK 925 | Braveheart | 1995 | 178 | English | 1995-09-08 | UKSample table: genres
gen_id | gen_title --------+---------------------- 1001 | Action 1002 | Adventure 1003 | Animation 1004 | Biography 1005 | Comedy 1006 | Crime 1007 | Drama 1008 | Horror 1009 | Music 1010 | Mystery 1011 | Romance 1012 | Thriller 1013 | War
Sample table: movie_genres
mov_id | gen_id --------+-------- 922 | 1001 917 | 1002 903 | 1002 912 | 1003 911 | 1005 908 | 1006 913 | 1006 926 | 1007 928 | 1007 918 | 1007 921 | 1007 902 | 1008 923 | 1009 907 | 1010 927 | 1010 901 | 1010 914 | 1011 906 | 1012 904 | 1013Sample table: rating
mov_id | rev_id | rev_stars | num_o_ratings --------+--------+-----------+--------------- 901 | 9001 | 8.40 | 263575 902 | 9002 | 7.90 | 20207 903 | 9003 | 8.30 | 202778 906 | 9005 | 8.20 | 484746 924 | 9006 | 7.30 | 908 | 9007 | 8.60 | 779489 909 | 9008 | | 227235 910 | 9009 | 3.00 | 195961 911 | 9010 | 8.10 | 203875 912 | 9011 | 8.40 | 914 | 9013 | 7.00 | 862618 915 | 9001 | 7.70 | 830095 916 | 9014 | 4.00 | 642132 925 | 9015 | 7.70 | 81328 918 | 9016 | | 580301 920 | 9017 | 8.10 | 609451 921 | 9018 | 8.00 | 667758 922 | 9019 | 8.40 | 511613 923 | 9020 | 6.70 | 13091Sample table: actor
act_id | act_fname | act_lname | act_gender --------+----------------------+----------------------+------------ 101 | James | Stewart | M 102 | Deborah | Kerr | F 103 | Peter | OToole | M 104 | Robert | De Niro | M 105 | F. Murray | Abraham | M 106 | Harrison | Ford | M 107 | Nicole | Kidman | F 108 | Stephen | Baldwin | M 109 | Jack | Nicholson | M 110 | Mark | Wahlberg | M 111 | Woody | Allen | M 112 | Claire | Danes | F 113 | Tim | Robbins | M 114 | Kevin | Spacey | M 115 | Kate | Winslet | F 116 | Robin | Williams | M 117 | Jon | Voight | M 118 | Ewan | McGregor | M 119 | Christian | Bale | M 120 | Maggie | Gyllenhaal | F 121 | Dev | Patel | M 122 | Sigourney | Weaver | F 123 | David | Aston | M 124 | Ali | Astin | FSample table: director
dir_id | dir_fname | dir_lname --------+----------------------+---------------------- 201 | Alfred | Hitchcock 202 | Jack | Clayton 203 | David | Lean 204 | Michael | Cimino 205 | Milos | Forman 206 | Ridley | Scott 207 | Stanley | Kubrick 208 | Bryan | Singer 209 | Roman | Polanski 210 | Paul | Thomas Anderson 211 | Woody | Allen 212 | Hayao | Miyazaki 213 | Frank | Darabont 214 | Sam | Mendes 215 | James | Cameron 216 | Gus | Van Sant 217 | John | Boorman 218 | Danny | Boyle 219 | Christopher | Nolan 220 | Richard | Kelly 221 | Kevin | Spacey 222 | Andrei | Tarkovsky 223 | Peter | JacksonSample table: movie_direction
dir_id | mov_id --------+-------- 201 | 901 202 | 902 203 | 903 204 | 904 205 | 905 206 | 906 207 | 907 208 | 908 209 | 909 210 | 910 211 | 911 212 | 912 213 | 913 214 | 914 215 | 915 216 | 916 217 | 917 218 | 918 219 | 919 220 | 920 218 | 921 215 | 922 221 | 923Sample table: movie_cast
act_id | mov_id | role --------+--------+-------------------------------- 101 | 901 | John Scottie Ferguson 102 | 902 | Miss Giddens 103 | 903 | T.E. Lawrence 104 | 904 | Michael 105 | 905 | Antonio Salieri 106 | 906 | Rick Deckard 107 | 907 | Alice Harford 108 | 908 | McManus 110 | 910 | Eddie Adams 111 | 911 | Alvy Singer 112 | 912 | San 113 | 913 | Andy Dufresne 114 | 914 | Lester Burnham 115 | 915 | Rose DeWitt Bukater 116 | 916 | Sean Maguire 117 | 917 | Ed 118 | 918 | Renton 120 | 920 | Elizabeth Darko 121 | 921 | Older Jamal 122 | 922 | Ripley 114 | 923 | Bobby Darin 109 | 909 | J.J. Gittes 119 | 919 | Alfred Borden
Sample Solution:
-- Selecting various columns from multiple tables: movie, movie_cast, actor, movie_genres, genres, movie_direction, director, and rating
SELECT mov_title, act_fname, act_lname,
mov_year, role, gen_title, dir_fname, dir_lname,
mov_dt_rel, rev_stars
-- Performing natural joins between the movie, movie_cast, actor, movie_genres, genres, movie_direction, director, and rating tables
FROM movie
NATURAL JOIN movie_cast
NATURAL JOIN actor
NATURAL JOIN movie_genres
NATURAL JOIN genres
NATURAL JOIN movie_direction
NATURAL JOIN director
NATURAL JOIN rating
-- Filtering the result to include only records where act_gender is 'F'
WHERE act_gender='F';
Sample Output:
mov_title | act_fname | act_lname | mov_year | role | gen_title | dir_fname | dir_lname | mov_dt_rel | rev_stars ----------------------------------------------------+----------------------+----------------------+----------+--------------------------------+----------------------+----------------------+----------------------+------------+----------- The Innocents | Deborah | Kerr | 1961 | Miss Giddens | Horror | Jack | Clayton | 1962-02-19 | 7.90 Princess Mononoke | Claire | Danes | 1997 | San | Animation | Hayao | Miyazaki | 2001-10-19 | 8.40 Aliens | Sigourney | Weaver | 1986 | Ripley | Action | James | Cameron | 1986-08-29 | 8.40 (3 rows)
Code Explanation :
The said query in SQL that retrieves the title, year, release date, and rating of movies, as well as the first and last name of the actresses who played a role in the movie, the genres of the movie, and the first and last name of the director of the movie.
1. The NATURAL JOIN clause joins the movie_cast table to the movie table based on matching column names in the two tables.
2. The actor table joined to the result of the previous join step 1. 3. The movie_genres table joined to the result of the previous join step 2.
4. The genres table joined to the result of the previous join step 3.
5. The movie_direction table joined to the result of the previous join step 4.
6. The director table joined to the result of the previous join step 5.
7. The rating table joined to the result of the previous join step 6.
The WHERE clause filter the result, where only actors with a gender of 'F' will be included in the result set.
Alternative Solutions:
Using Subquery with EXISTS:
SELECT mov_title, act_fname, act_lname,
mov_year, role, gen_title, dir_fname, dir_lname,
mov_dt_rel, rev_stars
FROM movie
JOIN movie_cast ON movie.mov_id = movie_cast.mov_id
JOIN actor ON movie_cast.act_id = actor.act_id
JOIN movie_genres ON movie.mov_id = movie_genres.mov_id
JOIN genres ON movie_genres.gen_id = genres.gen_id
JOIN movie_direction ON movie.mov_id = movie_direction.mov_id
JOIN director ON movie_direction.dir_id = director.dir_id
JOIN rating ON movie.mov_id = rating.mov_id
WHERE EXISTS (
SELECT 1
FROM actor
WHERE actor.act_id = movie_cast.act_id
AND actor.act_gender = 'F'
);
Explanation:
This SQL query uses a subquery with EXISTS to check if there exists an actor with gender 'F' who is part of the cast. If such an actor exists, the main query includes the corresponding movie details.
Using INNER JOINs with Subquery:
SELECT mov_title, act_fname, act_lname,
mov_year, role, gen_title, dir_fname, dir_lname,
mov_dt_rel, rev_stars
FROM movie
JOIN movie_cast ON movie.mov_id = movie_cast.mov_id
JOIN actor ON movie_cast.act_id = actor.act_id
JOIN movie_genres ON movie.mov_id = movie_genres.mov_id
JOIN genres ON movie_genres.gen_id = genres.gen_id
JOIN movie_direction ON movie.mov_id = movie_direction.mov_id
JOIN director ON movie_direction.dir_id = director.dir_id
JOIN rating ON movie.mov_id = rating.mov_id
WHERE actor.act_gender = 'F';
Explanation:
This SQL query combines INNER JOINs with a WHERE clause to directly filter for actors with gender 'F'.
Relational Algebra Expression:
Relational Algebra Tree:
Practice Online
Query Visualization:
Duration:
Rows:
Cost:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
Previous: From the following tables, write a SQL query to find the years when most of the ‘Mystery Movies’ produced. Count the number of generic title and compute their average rating. Group the result set on movie release year, generic title. Return movie year, generic title, number of generic title and average rating.
Next: SQL Basic Exercises on Soccer Database
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics