AdventureWorks Database: Divide rows into defined groups based on SalesYTD
118. From the following table write a query in SQL to divide rows into four groups of employees based on their year-to-date sales. Return first name, last name, group as quartile, year-to-date sales, and postal code.
Sample table: Sales.SalesPersonbusinessentityid|territoryid|salesquota|bonus|commissionpct|salesytd |saleslastyear|rowguid |modifieddate | ----------------+-----------+----------+-----+-------------+------------+-------------+------------------------------------+-----------------------+ 274| | | 0| 0| 559697.5639| 0|48754992-9ee0-4c0e-8c94-9451604e3e02|2010-12-28 00:00:00.000| 275| 2| 300000| 4100| 0.012|3763178.1787| 1750406.4785|1e0a7274-3064-4f58-88ee-4c6586c87169|2011-05-24 00:00:00.000| 276| 4| 250000| 2000| 0.015|4251368.5497| 1439156.0291|4dd9eee4-8e81-4f8c-af97-683394c1f7c0|2011-05-24 00:00:00.000| 277| 3| 250000| 2500| 0.015|3189418.3662| 1997186.2037|39012928-bfec-4242-874d-423162c3f567|2011-05-24 00:00:00.000| 278| 6| 250000| 500| 0.01|1453719.4653| 1620276.8966|7a0ae1ab-b283-40f9-91d1-167abf06d720|2011-05-24 00:00:00.000| 279| 5| 300000| 6700| 0.01| 2315185.611| 1849640.9418|52a5179d-3239-4157-ae29-17e868296dc0|2011-05-24 00:00:00.000| 280| 1| 250000| 5000| 0.01|1352577.1325| 1927059.178|be941a4a-fb50-4947-bda4-bb8972365b08|2011-05-24 00:00:00.000| 281| 4| 250000| 3550| 0.01|2458535.6169| 2073505.9999|35326ddb-7278-4fef-b3ba-ea137b69094e|2011-05-24 00:00:00.000| 282| 6| 250000| 5000| 0.015|2604540.7172| 2038234.6549|31fd7fc1-dc84-4f05-b9a0-762519eacacc|2011-05-24 00:00:00.000| 283| 1| 250000| 3500| 0.012|1573012.9383| 1371635.3158|6bac15b2-8ffb-45a9-b6d5-040e16c2073f|2011-05-24 00:00:00.000| 284| 1| 300000| 3900| 0.019|1576562.1966| 0|ac94ec04-a2dc-43e3-8654-dd0c546abc17|2012-09-23 00:00:00.000| 285| | | 0| 0| 172524.4512| 0|cfdbef27-b1f7-4a56-a878-0221c73bae67|2013-03-07 00:00:00.000| 286| 9| 250000| 5650| 0.018|1421810.9242| 2278548.9776|9b968777-75dc-45bd-a8df-9cdaa72839e1|2013-05-23 00:00:00.000| 287| | | 0| 0| 519905.932| 0|1dd1f689-df74-4149-8600-59555eef154b|2012-04-09 00:00:00.000| 288| 8| 250000| 75| 0.018|1827066.7118| 1307949.7917|224bb25a-62e3-493e-acaf-4f8f5c72396a|2013-05-23 00:00:00.000| 289| 10| 250000| 5150| 0.02|4116871.2277| 1635823.3967|25f6838d-9db4-4833-9ddc-7a24283af1ba|2012-05-23 00:00:00.000| 290| 7| 250000| 985| 0.016|3121616.3202| 2396539.7601|f509e3d4-76c8-42aa-b353-90b7b8db08de|2012-05-23 00:00:00.000|Sample table: Person.Person
businessentityid|persontype|namestyle|title|firstname |middlename |lastname |suffix|emailpromotion|additionalcontactinfo|demographics|rowguid |modifieddate | ----------------+----------+---------+-----+------------------------+----------------+----------------------+------+--------------+---------------------+------------+------------------------------------+-----------------------+ 1|EM |false | |Ken |J |Sánchez | | 0| |[XML] |92c4279f-1207-48a3-8448-4636514eb7e2|2009-01-07 00:00:00.000| 2|EM |false | |Terri |Lee |Duffy | | 1| |[XML] |d8763459-8aa8-47cc-aff7-c9079af79033|2008-01-24 00:00:00.000| 3|EM |false | |Roberto | |Tamburello | | 0| |[XML] |e1a2555e-0828-434b-a33b-6f38136a37de|2007-11-04 00:00:00.000| 4|EM |false | |Rob | |Walters | | 0| |[XML] |f2d7ce06-38b3-4357-805b-f4b6b71c01ff|2007-11-28 00:00:00.000| 5|EM |false |Ms. |Gail |A |Erickson | | 0| |[XML] |f3a3f6b4-ae3b-430c-a754-9f2231ba6fef|2007-12-30 00:00:00.000| 6|EM |false |Mr. |Jossef |H |Goldberg | | 0| |[XML] |0dea28fd-effe-482a-afd3-b7e8f199d56f|2013-12-16 00:00:00.000| 7|EM |false | |Dylan |A |Miller | | 2| |[XML] |c45e8ab8-01be-4b76-b215-820c8368181a|2009-02-01 00:00:00.000| 8|EM |false | |Diane |L |Margheim | | 0| |[XML] |a948e590-4a56-45a9-bc9a-160a1cc9d990|2008-12-22 00:00:00.000| 9|EM |false | |Gigi |N |Matthew | | 0| |[XML] |5fc28c0e-6d36-4252-9846-05caa0b1f6c5|2009-01-09 00:00:00.000| -- more --Sample table: Person.Address
|addressid|addressline1 |addressline2|city |stateprovinceid|postalcode|spatiallocation |rowguid |modifieddate | |---------|--------------------------|------------|-------------|---------------|----------|--------------------------------------------|------------------------------------|-----------------------| |1 |1970 Napa Ct. | |Bothell |79 |98011 |E6100000010CAE8BFC28BCE4474067A89189898A5EC0|9aadcb0d-36cf-483f-84d8-585c2d4ec6e9|2007-12-04 00:00:00.000| |2 |9833 Mt. Dias Blv. | |Bothell |79 |98011 |E6100000010CD6FA851AE6D74740BC262A0A03905EC0|32a54b9e-e034-4bfb-b573-a71cde60d8c0|2008-11-30 00:00:00.000| |3 |7484 Roundtree Drive | |Bothell |79 |98011 |E6100000010C18E304C4ADE14740DA930C7893915EC0|4c506923-6d1b-452c-a07c-baa6f5b142a4|2013-03-07 00:00:00.000| |4 |9539 Glenside Dr | |Bothell |79 |98011 |E6100000010C813A0D5F9FDE474011A5C28A7C955EC0|e5946c78-4bcc-477f-9fa1-cc09de16a880|2009-02-03 00:00:00.000| |5 |1226 Shoe St. | |Bothell |79 |98011 |E6100000010C61C64D8ABBD94740C460EA3FD8855EC0|fbaff937-4a97-4af0-81fd-b849900e9bb0|2008-12-19 00:00:00.000| |6 |1399 Firestone Drive | |Bothell |79 |98011 |E6100000010CE0B4E50458DA47402F12A5F80C975EC0|febf8191-9804-44c8-877a-33fde94f0075|2009-02-13 00:00:00.000| |7 |5672 Hale Dr. | |Bothell |79 |98011 |E6100000010C18E304C4ADE1474011A5C28A7C955EC0|0175a174-6c34-4d41-b3c1-4419cd6a0446|2009-12-11 00:00:00.000| |8 |6387 Scenic Avenue | |Bothell |79 |98011 |E6100000010C0029A5D93BDF4740E248962FD5975EC0|3715e813-4dca-49e0-8f1c-31857d21f269|2008-12-17 00:00:00.000| |9 |8713 Yosemite Ct. | |Bothell |79 |98011 |E6100000010C6A80AD742DDC4740851574F7198C5EC0|268af621-76d7-4c78-9441-144fd139821a|2012-05-30 00:00:00.000| |10 |250 Race Court | |Bothell |79 |98011 |E6100000010C219D64AE1FE4474040862564B7825EC0|0b6b739d-8eb6-4378-8d55-fe196af34c04|2008-12-02 00:00:00.000| -- more --
Sample Solution:
-- Selecting specific columns from the SalesPerson table and related tables
SELECT
-- Selecting the FirstName column from the Person table
p.FirstName,
-- Selecting the LastName column from the Person table
p.LastName,
-- Dividing the data into quartiles based on SalesYTD in descending order
NTILE(4) OVER(ORDER BY SalesYTD DESC) AS Quartile,
-- Casting SalesYTD as VARCHAR with a length of 20
CAST(SalesYTD as VARCHAR(20)) AS SalesYTD,
-- Selecting the PostalCode column from the Address table
a.PostalCode
FROM
Sales.SalesPerson AS s
-- Joining the SalesPerson table with the Person table on BusinessEntityID
INNER JOIN Person.Person AS p
ON s.BusinessEntityID = p.BusinessEntityID
-- Joining the Person table with the Address table on AddressID
INNER JOIN Person.Address AS a
ON a.AddressID = p.BusinessEntityID
-- Filtering records where TerritoryID is not NULL and SalesYTD is not equal to 0
WHERE
TerritoryID IS NOT NULL
AND SalesYTD <> 0;
Explanation:
- This SQL code selects specific columns from the SalesPerson table and related tables.
- It retrieves data related to salespersons' first names, last names, quartiles based on SalesYTD, SalesYTD values as strings, and postal codes.
- The NTILE(4) function divides the data into quartiles based on SalesYTD in descending order. Quartiles divide the data into four equal parts.
- The CAST(SalesYTD as VARCHAR(20)) part casts the SalesYTD column to VARCHAR with a length of 20. This is done to change the data type of SalesYTD from its original data type to VARCHAR.
- Records are filtered to include only those where TerritoryID is not NULL and SalesYTD is not equal to 0.
- The result set will contain the first names, last names, quartiles, SalesYTD values as strings, and postal codes of salespersons who meet the specified conditions.
Sample Output:
firstname|lastname |quartile|salesytd |postalcode| ---------+-----------------+--------+------------+----------+ Linda |Mitchell | 1|4251368.5497|98027 | Jae |Pak | 1|4116871.2277|98055 | Michael |Blythe | 1|3763178.1787|98027 | Jillian |Carson | 1|3189418.3662|98027 | Ranjit |Varkey Chudukatil| 2|3121616.3202|98055 | José |Saraiva | 2|2604540.7172|98055 | Shu |Ito | 2|2458535.6169|98055 | Tsvi |Reiter | 2|2315185.611 |98027 | Rachel |Valdez | 3|1827066.7118|98055 | Tete |Mensa-Annan | 3|1576562.1966|98055 | David |Campbell | 3|1573012.9383|98055 | Garrett |Vargas | 4|1453719.4653|98027 | Lynn |Tsoflias | 4|1421810.9242|98055 | Pamela |Ansman-Wolfe | 4|1352577.1325|98027 |
SQL AdventureWorks Editor:
Practice Online
Contribute your code and comments through Disqus.
Previous: Return the top ten employees ranked by their salary.
Next: Rank the products in inventory according to their quantities.
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics