Python Exercise: Latest number of confirmed deaths and recovered people of Novel Coronavirus cases Country wise
Write a Python program to get the latest number of confirmed deaths and recovered people of Novel Coronavirus (COVID-19) cases Country/Region - Province/State wise.
Sample Solution:
Python Code:
import pandas as pd
covid_data= pd.read_csv('https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/03-16-2020.csv')
data = covid_data.groupby(['Country/Region', 'Province/State'])['Confirmed', 'Deaths', 'Recovered'].max()
pd.set_option('display.max_rows', None)
print(data)
Sample Output:
Dataset information: <class 'pandas.core.frame.DataFrame'> Confirmed Deaths Recovered Country/Region Province/State Australia Australian Capital Territory 2 0 0 From Diamond Princess 0 0 0 New South Wales 210 4 4 Northern Territory 1 0 0 Queensland 78 0 8 South Australia 29 0 3 Tasmania 7 0 0 Victoria 94 0 8 Western Australia 31 1 0 Canada Alberta 74 0 0 British Columbia 103 4 4 Grand Princess 8 0 0 Manitoba 8 0 0 New Brunswick 8 0 0 Newfoundland and Labrador 3 0 0 Nova Scotia 7 0 0 Ontario 185 1 5 Prince Edward Island 1 0 0 Quebec 74 0 0 Saskatchewan 7 0 0 China Anhui 990 6 984 Beijing 456 8 369 Chongqing 576 6 570 Fujian 296 1 295 Gansu 133 2 91 Guangdong 1364 8 1307 Guangxi 253 2 248 Guizhou 147 2 144 Hainan 168 6 161 Hebei 318 6 310 Heilongjiang 482 13 456 Henan 1273 22 1250 Hong Kong 162 4 88 Hubei 67799 3111 56003 Hunan 1018 4 1014 Inner Mongolia 75 1 73 Jiangsu 631 0 631 Jiangxi 935 1 934 Jilin 93 1 92 Liaoning 125 1 120 Macau 12 0 10 Ningxia 75 0 75 Qinghai 18 0 18 Shaanxi 246 3 236 Shandong 761 7 746 Shanghai 358 3 325 Shanxi 133 0 133 Sichuan 540 3 520 Tianjin 136 3 133 Tibet 1 0 1 Xinjiang 76 3 73 Yunnan 176 2 172 Zhejiang 1232 1 1216 Cruise Ship Diamond Princess 696 7 325 Denmark Denmark 977 4 1 Faroe Islands 47 0 0 France France 7652 148 12 French Guiana 7 0 0 French Polynesia 3 0 0 Guadeloupe 6 0 0 Mayotte 1 0 0 Reunion 9 0 0 Saint Barthelemy 3 0 0 St Martin 2 0 0 Netherlands Curacao 3 0 0 Netherlands 1705 43 2 US Alabama 39 0 0 Alaska 3 0 0 Arizona 20 0 1 Arkansas 22 0 0 California 698 12 6 Colorado 160 2 0 Connecticut 68 0 0 Delaware 16 0 0 Diamond Princess 47 0 0 District of Columbia 22 0 0 Florida 216 6 0 Georgia 146 1 0 Grand Princess 21 0 0 Guam 3 0 0 Hawaii 10 0 0 Idaho 8 0 0 Illinois 161 1 2 Indiana 30 2 0 Iowa 23 0 0 Kansas 18 1 0 Kentucky 26 1 1 Louisiana 196 4 0 Maine 32 0 0 Maryland 60 0 3 Massachusetts 218 0 1 Michigan 65 0 0 Minnesota 60 0 0 Mississippi 21 0 0 Missouri 11 0 0 Montana 9 0 0 Nebraska 21 0 0 Nevada 56 1 0 New Hampshire 26 0 0 New Jersey 267 3 1 New Mexico 23 0 0 New York 1706 13 0 North Carolina 64 0 0 North Dakota 3 0 0 Ohio 67 0 0 Oklahoma 19 0 0 Oregon 66 1 0 Pennsylvania 112 0 0 Puerto Rico 5 0 0 Rhode Island 23 0 0 South Carolina 47 1 0 South Dakota 11 1 0 Tennessee 74 0 0 Texas 110 1 0 Utah 51 0 0 Vermont 12 0 0 Virgin Islands 2 0 0 Virginia 67 2 0 Washington 1076 55 1 West Virginia 1 0 0 Wisconsin 72 0 1 Wyoming 11 0 0 United Kingdom Cayman Islands 1 1 0 Channel Islands 6 0 0 Gibraltar 3 0 1 United Kingdom 1950 55 52
Python Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
Previous: Write a Python program to get the latest number of confirmed, deaths, recovered and active cases of Novel Coronavirus (COVID-19) Country wise.
Next: Write a Python program to get the Chinese province wise cases of confirmed, deaths and recovered cases of Novel Coronavirus (COVID-19).
What is the difficulty level of this exercise?
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics