Calculating cumulative sum in Pandas DataFrame with NumPy array
Python Pandas Numpy: Exercise-12 with Solution
Calculate the cumulative sum of a NumPy array and store the results in a new Pandas DataFrame column.
Sample Solution:
Python Code:
import pandas as pd
import numpy as np
# Create a sample DataFrame
data = {'Values': [100, 200, 300, 400, 500]}
df = pd.DataFrame(data)
# Create a NumPy array from the 'Values' column
numpy_array = np.array(df['Values'])
# Calculate the cumulative sum and store in a new column 'Cumulative_Sum'
df['Cumulative_Sum'] = np.cumsum(numpy_array)
# Display the updated DataFrame
print(df)
Output:
Values Cumulative_Sum 0 100 100 1 200 300 2 300 600 3 400 1000 4 500 1500
Explanation:
In the exerciser above -
- First we create a sample DataFrame (df) with a column 'Values'.
- Next we convert the 'Values' column to a NumPy array using np.array().
- The np.cumsum(numpy_array) function calculates the cumulative sum of the NumPy array.
- The result is assigned to a new column 'Cumulative_Sum' in the DataFrame.
- The updated DataFrame is then printed to the console.
Flowchart:
Python Code Editor:
Previous: Calculating correlation matrix for DataFrame in Python.
Next: Grouping DataFrame by column and calculating mean in Python.
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://w3resource.com/python-exercises/pandas_numpy/pandas_numpy-exercise-12.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics