w3resource

Pandas: Create a series with a PeriodIndex which represents all the calendar month periods in 2029 and 2031

Pandas Time Series: Exercise-29 with Solution

Write a Pandas program create a series with a PeriodIndex which represents all the calendar month periods in 2029 and 2031. Also print the values for all periods in 2030.

Note: PeriodIndex is an immutable ndarray holding ordinal values indicating regular periods in time such as particular years, quarters, months, etc.

Sample Solution:

Python Code :

import pandas as pd
import numpy as np
pi = pd.Series(np.random.randn(36), 
               pd.period_range('1/1/2029', 
                               '12/31/2031', freq='M'))
print("PeriodIndex which represents all the calendar month periods in 2029 and 2030:")
print(pi)
print("\nValues for all periods in 2030:")
print(pi['2030'])

Sample Output:

PeriodIndex which represents all the calendar month periods in 2029 and 2030:
2029-01    0.382450
2029-02   -1.077418
2029-03    0.131711
2029-04    1.044379
2029-05   -0.101383
2029-06    0.149212
2029-07    1.241014
2029-08    0.242632
2029-09   -0.252832
2029-10   -2.267629
2029-11    0.716542
2029-12   -1.397595
2030-01    0.005339
2030-02    0.454597
2030-03    1.140378
2030-04    1.024139
2030-05    1.744527
2030-06    0.827034
2030-07   -0.610342
2030-08    0.533601
2030-09   -2.200672
2030-10   -0.373814
2030-11   -1.366233
2030-12    0.173628
2031-01    0.691684
2031-02   -0.583149
2031-03    1.076706
2031-04   -3.059091
2031-05   -1.584180
2031-06    0.209410
2031-07   -0.984389
2031-08   -0.134217
2031-09    1.541736
2031-10    0.125816
2031-11   -0.066537
2031-12   -1.076096
Freq: M, dtype: float64

Values for all periods in 2030:
2030-01    0.005339
2030-02    0.454597
2030-03    1.140378
2030-04    1.024139
2030-05    1.744527
2030-06    0.827034
2030-07   -0.610342
2030-08    0.533601
2030-09   -2.200672
2030-10   -0.373814
2030-11   -1.366233
2030-12    0.173628
Freq: M, dtype: float64

Python Code Editor:

Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://w3resource.com/python-exercises/pandas/time-series/pandas-time-series-exercise-29.php