Pandas: Display memory usage of a given DataFrame and every column of the DataFrame
Pandas: DataFrame Exercise-71 with Solution
Write a Pandas program to display memory usage of a given DataFrame and every column of the DataFrame.
Sample Solution :
Python Code :
import pandas as pd
df = pd.DataFrame({
'Name': ['Alberto Franco','Gino Mcneill','Ryan Parkes', 'Eesha Hinton', 'Syed Wharton'],
'Date_Of_Birth ': ['17/05/2002','16/02/1999','25/09/1998','11/05/2002','15/09/1997'],
'Age': [18.5, 21.2, 22.5, 22, 23]
})
print("Original DataFrame:")
print(df)
print("\nGlobal usage of memory of the DataFrame:")
print(df.info(memory_usage = "deep"))
print("\nThe usage of memory of every column of the said DataFrame:")
print(df.memory_usage(deep = True))
Sample Output:
Original DataFrame: Name Date_Of_Birth Age 0 Alberto Franco 17/05/2002 18.5 1 Gino Mcneill 16/02/1999 21.2 2 Ryan Parkes 25/09/1998 22.5 3 Eesha Hinton 11/05/2002 22.0 4 Syed Wharton 15/09/1997 23.0 Global usage of memory of the DataFrame: <class 'pandas.core.frame.DataFrame'> RangeIndex: 5 entries, 0 to 4 Data columns (total 3 columns): Name 5 non-null object Date_Of_Birth 5 non-null object Age 5 non-null float64 dtypes: float64(1), object(2) memory usage: 801.0 bytes None The usage of memory of every column of the said DataFrame: Index 80 Name 346 Date_Of_Birth 335 Age 40 dtype: int64
Python-Pandas Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
Previous: Write a Pandas program to convert continuous values of a column in a given DataFrame to categorical.
Next: Write a Pandas program to combine many given series to create a DataFrame.
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://w3resource.com/python-exercises/pandas/python-pandas-data-frame-exercise-71.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics