Pandas: Display memory usage of a given DataFrame and every column of the DataFrame
71. Display Memory Usage of DataFrame and Columns
Write a Pandas program to display memory usage of a given DataFrame and every column of the DataFrame.
Sample Solution :
Python Code :
import pandas as pd
df = pd.DataFrame({
'Name': ['Alberto Franco','Gino Mcneill','Ryan Parkes', 'Eesha Hinton', 'Syed Wharton'],
'Date_Of_Birth ': ['17/05/2002','16/02/1999','25/09/1998','11/05/2002','15/09/1997'],
'Age': [18.5, 21.2, 22.5, 22, 23]
})
print("Original DataFrame:")
print(df)
print("\nGlobal usage of memory of the DataFrame:")
print(df.info(memory_usage = "deep"))
print("\nThe usage of memory of every column of the said DataFrame:")
print(df.memory_usage(deep = True))
Sample Output:
Original DataFrame:
Name Date_Of_Birth Age
0 Alberto Franco 17/05/2002 18.5
1 Gino Mcneill 16/02/1999 21.2
2 Ryan Parkes 25/09/1998 22.5
3 Eesha Hinton 11/05/2002 22.0
4 Syed Wharton 15/09/1997 23.0
Global usage of memory of the DataFrame:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5 entries, 0 to 4
Data columns (total 3 columns):
Name 5 non-null object
Date_Of_Birth 5 non-null object
Age 5 non-null float64
dtypes: float64(1), object(2)
memory usage: 801.0 bytes
None
The usage of memory of every column of the said DataFrame:
Index 80
Name 346
Date_Of_Birth 335
Age 40
dtype: int64
For more Practice: Solve these Related Problems:
- Write a Pandas program to display the overall memory usage of a DataFrame and then break it down by each column.
- Write a Pandas program to compute the memory footprint of each column and then output a bar chart of these values.
- Write a Pandas program to get the memory usage details of a DataFrame and then compare the memory consumption before and after data type optimization.
- Write a Pandas program to list the memory usage per column and then convert the results to a more human-readable format (e.g., KB, MB).
Go to:
PREV : Convert Continuous Column to Categorical.
NEXT : Combine Many Series to Create a DataFrame.
Python-Pandas Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
