w3resource

Pandas - Normalizing data in a DataFrame using a custom function


Pandas: Custom Function Exercise-17 with Solution


Write a Pandas program that applies a Custom function to Normalize data in a DataFrame.

This exercise demonstrates how to apply a custom function to normalize (scale) the values in a DataFrame.

Sample Solution :

Code :

import pandas as pd

# Create a sample DataFrame
df = pd.DataFrame({
    'A': [10, 20, 30],
    'B': [40, 50, 60]
})

# Define a custom function to normalize values
def normalize(column):
    return (column - column.min()) / (column.max() - column.min())

# Apply the function column-wise
df_normalized = df.apply(normalize, axis=0)

# Output the result
print(df_normalized)

Output:

     A    B
0  0.0  0.0
1  0.5  0.5
2  1.0  1.0                                

Explanation:

  • Created a DataFrame with two columns 'A' and 'B'.
  • Defined a function normalize() to normalize values by scaling them between 0 and 1.
  • Applied the normalization function column-wise using apply() with axis=0.
  • Returned a DataFrame with normalized values.

Python-Pandas Code Editor:

Have another way to solve this solution? Contribute your code (and comments) through Disqus.

What is the difficulty level of this exercise?

Test your Programming skills with w3resource's quiz.



Become a Patron!

Follow us on Facebook and Twitter for latest update.