w3resource

Filling missing data in a DataFrame using fillna()


Pandas: Data Cleaning and Preprocessing Exercise-1 with Solution


Write a Pandas program to fill missing values (NaN) in a DataFrame using fillna().

In this exercise, you will learn how to fill missing values (NaN) in a DataFrame using fillna() by replacing them with a constant value.

Sample Solution :

Code :

import pandas as pd
# Create a sample DataFrame with missing values
df = pd.DataFrame({
    'Name': ['David', 'Annabel', 'Charlie', None],
    'Age': [25, 30, None, 22],
    'Salary': [50000, None, 70000, 60000]
})
# Fill missing values with a constant
df_filled = df.fillna(value={'Name': 'Unknown', 'Age': 0, 'Salary': 0})
# Output the result
print(df_filled)

Output:

      Name   Age   Salary
0    David  25.0  50000.0
1  Annabel  30.0      0.0
2  Charlie   0.0  70000.0
3  Unknown  22.0  60000.0

Explanation:

  • Created a DataFrame with some missing values (None).
  • Used fillna() to fill missing values with constant replacements: 'Unknown' for names, and 0 for missing ages and salaries.
  • Returned the DataFrame with missing values replaced.

Python-Pandas Code Editor:

Have another way to solve this solution? Contribute your code (and comments) through Disqus.

What is the difficulty level of this exercise?

Test your Programming skills with w3resource's quiz.



Become a Patron!

Follow us on Facebook and Twitter for latest update.