w3resource

Pandas - Applying a Custom Function to Multiple Columns in DataFrame


Pandas: Custom Function Exercise-7 with Solution


Write a Pandas program that applies a custom function to multiple columns using apply().

In this exercise, we have applied a custom function to multiple columns of a DataFrame, modifying their values based on a specific condition.

Sample Solution:

Code :

import pandas as pd

# Create a sample DataFrame
df = pd.DataFrame({
    'A': [1, 2, 3],
    'B': [10, 20, 30],
    'C': [100, 200, 300]
})

# Define a custom function that subtracts a value from two columns
def subtract_values(row):
    return row['A'] - row['B']

# Apply the custom function across columns 'A' and 'B' for each row
df['A_minus_B'] = df.apply(subtract_values, axis=1)

# Output the result
print(df)

Output:

   A   B    C  A_minus_B
0  1  10  100         -9
1  2  20  200        -18
2  3  30  300        -27                               

Explanation:

  • Created a DataFrame with columns 'A', 'B', and 'C'.
  • Defined a custom function subtract_values() that subtracts column 'B' from column 'A'.
  • Applied this function across columns using apply() with axis=1.
  • Added the results as a new column 'A_minus_B' in the DataFrame.

Python-Pandas Code Editor:

Have another way to solve this solution? Contribute your code (and comments) through Disqus.

What is the difficulty level of this exercise?

Test your Programming skills with w3resource's quiz.



Become a Patron!

Follow us on Facebook and Twitter for latest update.