Pandas: Replace the missing values with the most frequent values present in each column
Pandas Handling Missing Values: Exercise-19 with Solution
Write a Pandas program to replace the missing values with the most frequent values present in each column of a given dataframe.
Test Data:
ord_no purch_amt sale_amt ord_date customer_id salesman_id 0 70001.0 150.50 10.50 2012-10-05 3002 5002.0 1 NaN NaN 20.65 2012-09-10 3001 5003.0 2 70002.0 65.26 NaN NaN 3001 5001.0 3 70004.0 110.50 11.50 2012-08-17 3003 NaN 4 NaN 948.50 98.50 2012-09-10 3002 5002.0 5 70005.0 NaN NaN 2012-07-27 3001 5001.0 6 NaN 5760.00 57.00 2012-09-10 3001 5001.0 7 70010.0 1983.43 19.43 2012-10-10 3004 NaN 8 70003.0 NaN NaN 2012-10-10 3003 5003.0 9 70012.0 250.45 25.45 2012-06-27 3002 5002.0 10 NaN 75.29 75.29 2012-08-17 3001 5003.0 11 70013.0 3045.60 35.60 2012-04-25 3001 NaN
Sample Solution:
Python Code :
import pandas as pd
import numpy as np
pd.set_option('display.max_rows', None)
#pd.set_option('display.max_columns', None)
df = pd.DataFrame({
'ord_no':[70001,np.nan,70002,70004,np.nan,70005,np.nan,70010,70003,70012,np.nan,70013],
'purch_amt':[150.5,np.nan,65.26,110.5,948.5,np.nan,5760,1983.43,np.nan,250.45, 75.29,3045.6],
'sale_amt':[10.5,20.65,np.nan,11.5,98.5,np.nan,57,19.43,np.nan,25.45, 75.29,35.6],
'ord_date': ['2012-10-05','2012-09-10',np.nan,'2012-08-17','2012-09-10','2012-07-27','2012-09-10','2012-10-10','2012-10-10','2012-06-27','2012-08-17','2012-04-25'],
'customer_id':[3002,3001,3001,3003,3002,3001,3001,3004,3003,3002,3001,3001],
'salesman_id':[5002,5003,5001,np.nan,5002,5001,5001,np.nan,5003,5002,5003,np.nan]})
print("Original Orders DataFrame:")
print(df)
print("\nReplace the missing values with the most frequent values present in each column:")
result = df.fillna(df.mode().iloc[0])
print(result)
Sample Output:
Original Orders DataFrame: ord_no purch_amt ... customer_id salesman_id 0 70001.0 150.50 ... 3002 5002.0 1 NaN NaN ... 3001 5003.0 2 70002.0 65.26 ... 3001 5001.0 3 70004.0 110.50 ... 3003 NaN 4 NaN 948.50 ... 3002 5002.0 5 70005.0 NaN ... 3001 5001.0 6 NaN 5760.00 ... 3001 5001.0 7 70010.0 1983.43 ... 3004 NaN 8 70003.0 NaN ... 3003 5003.0 9 70012.0 250.45 ... 3002 5002.0 10 NaN 75.29 ... 3001 5003.0 11 70013.0 3045.60 ... 3001 NaN [12 rows x 6 columns] Replace the missing values with the most frequent values present in each column: ord_no purch_amt ... customer_id salesman_id 0 70001.0 150.50 ... 3002 5002.0 1 70001.0 65.26 ... 3001 5003.0 2 70002.0 65.26 ... 3001 5001.0 3 70004.0 110.50 ... 3003 5001.0 4 70001.0 948.50 ... 3002 5002.0 5 70005.0 65.26 ... 3001 5001.0 6 70001.0 5760.00 ... 3001 5001.0 7 70010.0 1983.43 ... 3004 5001.0 8 70003.0 65.26 ... 3003 5003.0 9 70012.0 250.45 ... 3002 5002.0 10 70001.0 75.29 ... 3001 5003.0 11 70013.0 3045.60 ... 3001 5001.0 [12 rows x 6 columns]
Python Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
Previous: Write a Pandas program to find the Indexes of missing values in a given DataFrame.
Next: Write a Pandas program to create a hitmap for more information about the distribution of missing values in a given DataFrame.
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://w3resource.com/python-exercises/pandas/missing-values/python-pandas-missing-values-exercise-19.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics