w3resource

Pandas: Replacing NaNs using Median/Mean of the column

Pandas Handling Missing Values: Exercise-14 with Solution

Write a Pandas program to replace NaNs with median or mean of the specified columns in a given DataFrame.

Test Data:

     ord_no  purch_amt  sale_amt    ord_date  customer_id  salesman_id
0   70001.0     150.50     10.50  2012-10-05         3002       5002.0
1       NaN        NaN     20.65  2012-09-10         3001       5003.0
2   70002.0      65.26       NaN         NaN         3001       5001.0
3   70004.0     110.50     11.50  2012-08-17         3003          NaN
4       NaN     948.50     98.50  2012-09-10         3002       5002.0
5   70005.0        NaN       NaN  2012-07-27         3001       5001.0
6       NaN    5760.00     57.00  2012-09-10         3001       5001.0
7   70010.0    1983.43     19.43  2012-10-10         3004          NaN
8   70003.0        NaN       NaN  2012-10-10         3003       5003.0
9   70012.0     250.45     25.45  2012-06-27         3002       5002.0
10      NaN      75.29     75.29  2012-08-17         3001       5003.0
11  70013.0    3045.60     35.60  2012-04-25         3001          NaN

Sample Solution:

Python Code :

import pandas as pd
import numpy as np
pd.set_option('display.max_rows', None)
#pd.set_option('display.max_columns', None)
df = pd.DataFrame({
'ord_no':[70001,np.nan,70002,70004,np.nan,70005,np.nan,70010,70003,70012,np.nan,70013],
'purch_amt':[150.5,np.nan,65.26,110.5,948.5,np.nan,5760,1983.43,np.nan,250.45, 75.29,3045.6],
'sale_amt':[10.5,20.65,np.nan,11.5,98.5,np.nan,57,19.43,np.nan,25.45, 75.29,35.6],
'ord_date': ['2012-10-05','2012-09-10',np.nan,'2012-08-17','2012-09-10','2012-07-27','2012-09-10','2012-10-10','2012-10-10','2012-06-27','2012-08-17','2012-04-25'],
'customer_id':[3002,3001,3001,3003,3002,3001,3001,3004,3003,3002,3001,3001],
'salesman_id':[5002,5003,5001,np.nan,5002,5001,5001,np.nan,5003,5002,5003,np.nan]})
print("Original Orders DataFrame:")
print(df)
print("Using median in purch_amt to replace NaN:")
df['purch_amt'].fillna(df['purch_amt'].median(), inplace=True)
print(df)
print("Using mean to replace NaN:")
df['sale_amt'].fillna(int(df['sale_amt'].mean()), inplace=True)
print(df)

Sample Output:

Original Orders DataFrame:
     ord_no  purch_amt     ...      customer_id salesman_id
0   70001.0     150.50     ...             3002      5002.0
1       NaN        NaN     ...             3001      5003.0
2   70002.0      65.26     ...             3001      5001.0
3   70004.0     110.50     ...             3003         NaN
4       NaN     948.50     ...             3002      5002.0
5   70005.0        NaN     ...             3001      5001.0
6       NaN    5760.00     ...             3001      5001.0
7   70010.0    1983.43     ...             3004         NaN
8   70003.0        NaN     ...             3003      5003.0
9   70012.0     250.45     ...             3002      5002.0
10      NaN      75.29     ...             3001      5003.0
11  70013.0    3045.60     ...             3001         NaN

[12 rows x 6 columns]
Using median in purch_amt to replace NaN:
     ord_no  purch_amt     ...      customer_id salesman_id
0   70001.0     150.50     ...             3002      5002.0
1       NaN     250.45     ...             3001      5003.0
2   70002.0      65.26     ...             3001      5001.0
3   70004.0     110.50     ...             3003         NaN
4       NaN     948.50     ...             3002      5002.0
5   70005.0     250.45     ...             3001      5001.0
6       NaN    5760.00     ...             3001      5001.0
7   70010.0    1983.43     ...             3004         NaN
8   70003.0     250.45     ...             3003      5003.0
9   70012.0     250.45     ...             3002      5002.0
10      NaN      75.29     ...             3001      5003.0
11  70013.0    3045.60     ...             3001         NaN

[12 rows x 6 columns]
Using mean to replace NaN:
     ord_no  purch_amt     ...      customer_id salesman_id
0   70001.0     150.50     ...             3002      5002.0
1       NaN     250.45     ...             3001      5003.0
2   70002.0      65.26     ...             3001      5001.0
3   70004.0     110.50     ...             3003         NaN
4       NaN     948.50     ...             3002      5002.0
5   70005.0     250.45     ...             3001      5001.0
6       NaN    5760.00     ...             3001      5001.0
7   70010.0    1983.43     ...             3004         NaN
8   70003.0     250.45     ...             3003      5003.0
9   70012.0     250.45     ...             3002      5002.0
10      NaN      75.29     ...             3001      5003.0
11  70013.0    3045.60     ...             3001         NaN

[12 rows x 6 columns]

Python Code Editor:

Have another way to solve this solution? Contribute your code (and comments) through Disqus.

Previous: Write a Pandas program to replace NaNs with the value from the previous row or the next row in a given DataFrame.
Next: Write a Pandas program to interpolate the missing values using the Linear Interpolation method in a given DataFrame.

What is the difficulty level of this exercise?

Test your Programming skills with w3resource's quiz.



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://w3resource.com/python-exercises/pandas/missing-values/python-pandas-missing-values-exercise-14.php