w3resource

Pandas: Detect missing values of a given DataFrame

Pandas Handling Missing Values: Exercise-1 with Solution

Write a Pandas program to detect missing values of a given DataFrame. Display True or False.

Test Data:

     ord_no  purch_amt    ord_date  customer_id  salesman_id
0   70001.0     150.50  2012-10-05         3002       5002.0
1       NaN     270.65  2012-09-10         3001       5003.0
2   70002.0      65.26         NaN         3001       5001.0
3   70004.0     110.50  2012-08-17         3003          NaN
4       NaN     948.50  2012-09-10         3002       5002.0
5   70005.0    2400.60  2012-07-27         3001       5001.0
6       NaN    5760.00  2012-09-10         3001       5001.0
7   70010.0    1983.43  2012-10-10         3004          NaN
8   70003.0    2480.40  2012-10-10         3003       5003.0
9   70012.0     250.45  2012-06-27         3002       5002.0
10      NaN      75.29  2012-08-17         3001       5003.0
11  70013.0    3045.60  2012-04-25         3001          NaN

Sample Solution:

Python Code :

import pandas as pd
import numpy as np
pd.set_option('display.max_rows', None)
#pd.set_option('display.max_columns', None)
df = pd.DataFrame({
'ord_no':[70001,np.nan,70002,70004,np.nan,70005,np.nan,70010,70003,70012,np.nan,70013],
'purch_amt':[150.5,270.65,65.26,110.5,948.5,2400.6,5760,1983.43,2480.4,250.45, 75.29,3045.6],
'ord_date': ['2012-10-05','2012-09-10',np.nan,'2012-08-17','2012-09-10','2012-07-27','2012-09-10','2012-10-10','2012-10-10','2012-06-27','2012-08-17','2012-04-25'],
'customer_id':[3002,3001,3001,3003,3002,3001,3001,3004,3003,3002,3001,3001],
'salesman_id':[5002,5003,5001,np.nan,5002,5001,5001,np.nan,5003,5002,5003,np.nan]})
print("Original Orders DataFrame:")
print(df)
print("\nMissing values of the said dataframe:")
print(df.isna())

Sample Output:

Original Orders DataFrame:
     ord_no  purch_amt    ord_date  customer_id  salesman_id
0   70001.0     150.50  2012-10-05         3002       5002.0
1       NaN     270.65  2012-09-10         3001       5003.0
2   70002.0      65.26         NaN         3001       5001.0
3   70004.0     110.50  2012-08-17         3003          NaN
4       NaN     948.50  2012-09-10         3002       5002.0
5   70005.0    2400.60  2012-07-27         3001       5001.0
6       NaN    5760.00  2012-09-10         3001       5001.0
7   70010.0    1983.43  2012-10-10         3004          NaN
8   70003.0    2480.40  2012-10-10         3003       5003.0
9   70012.0     250.45  2012-06-27         3002       5002.0
10      NaN      75.29  2012-08-17         3001       5003.0
11  70013.0    3045.60  2012-04-25         3001          NaN

Missing values of the said dataframe:
    ord_no  purch_amt  ord_date  customer_id  salesman_id
0    False      False     False        False        False
1     True      False     False        False        False
2    False      False      True        False        False
3    False      False     False        False         True
4     True      False     False        False        False
5    False      False     False        False        False
6     True      False     False        False        False
7    False      False     False        False         True
8    False      False     False        False        False
9    False      False     False        False        False
10    True      False     False        False        False
11   False      False     False        False         True                 

Python Code Editor:

Have another way to solve this solution? Contribute your code (and comments) through Disqus.

Previous: Python Pandas Handling Missing Values Exercises Home.
Next: Write a Pandas program to identify the column(s) of a given DataFrame which have at least one missing value.

What is the difficulty level of this exercise?

Test your Programming skills with w3resource's quiz.



Follow us on Facebook and Twitter for latest update.

Python: Tips of the Day

F strings:

It is a common practice to add variables inside strings. F strings are by far the coolest way of doing it. To appreciate the f strings more, let's first perform the operation with the format function.

name = 'Owen'
age = 25
print("{} is {} years old".format(name, age))

Output:

Owen is 25 years old

We specify the variables that go inside the curly braces by using the format function at the end. F strings allow for specifying the variables inside the string.

name = 'Owen'
age = 25
print(f"{name} is {age} years old")

Output:

Owen is 25 years old

F strings are easier to follow and type. Moreover, they make the code more readable.

A, B, C = {2, 4, 6}
print(A, B, C)
A, B, C = ['p', 'q', 'r']
print(A, B, C)

Output:

2 4 6
p q r