Pandas: Split a dataset, group by one column and get mean, min, and max values by group
Pandas Grouping and Aggregating: Split-Apply-Combine Exercise-7 with Solution
Write a Pandas program to split a dataset, group by one column and get mean, min, and max values by group. Using the following dataset find the mean, min, and max values of purchase amount (purch_amt) group by customer id (customer_id).
Test Data:
ord_no purch_amt ord_date customer_id salesman_id 0 70001 150.50 2012-10-05 3005 5002 1 70009 270.65 2012-09-10 3001 5005 2 70002 65.26 2012-10-05 3002 5001 3 70004 110.50 2012-08-17 3009 5003 4 70007 948.50 2012-09-10 3005 5002 5 70005 2400.60 2012-07-27 3007 5001 6 70008 5760.00 2012-09-10 3002 5001 7 70010 1983.43 2012-10-10 3004 5006 8 70003 2480.40 2012-10-10 3009 5003 9 70012 250.45 2012-06-27 3008 5002 10 70011 75.29 2012-08-17 3003 5007 11 70013 3045.60 2012-04-25 3002 5001
Sample Solution:
Python Code :
import pandas as pd
pd.set_option('display.max_rows', None)
#pd.set_option('display.max_columns', None)
orders_data = pd.DataFrame({
'ord_no':[70001,70009,70002,70004,70007,70005,70008,70010,70003,70012,70011,70013],
'purch_amt':[150.5,270.65,65.26,110.5,948.5,2400.6,5760,1983.43,2480.4,250.45, 75.29,3045.6],
'ord_date': ['2012-10-05','2012-09-10','2012-10-05','2012-08-17','2012-09-10','2012-07-27','2012-09-10','2012-10-10','2012-10-10','2012-06-27','2012-08-17','2012-04-25'],
'customer_id':[3005,3001,3002,3009,3005,3007,3002,3004,3009,3008,3003,3002],
'salesman_id': [5002,5005,5001,5003,5002,5001,5001,5006,5003,5002,5007,5001]})
print("Original Orders DataFrame:")
print(orders_data)
result = orders_data.groupby('customer_id').agg({'purch_amt': ['mean', 'min', 'max']})
print("\nMean, min, and max values of purchase amount (purch_amt) group by customer id (customer_id).")
print(result)
Sample Output:
Original Orders DataFrame: ord_no purch_amt ord_date customer_id salesman_id 0 70001 150.50 2012-10-05 3005 5002 1 70009 270.65 2012-09-10 3001 5005 2 70002 65.26 2012-10-05 3002 5001 3 70004 110.50 2012-08-17 3009 5003 4 70007 948.50 2012-09-10 3005 5002 5 70005 2400.60 2012-07-27 3007 5001 6 70008 5760.00 2012-09-10 3002 5001 7 70010 1983.43 2012-10-10 3004 5006 8 70003 2480.40 2012-10-10 3009 5003 9 70012 250.45 2012-06-27 3008 5002 10 70011 75.29 2012-08-17 3003 5007 11 70013 3045.60 2012-04-25 3002 5001 Mean, min, and max values of purchase amount (purch_amt) group by customer id (customer_id). purch_amt mean min max customer_id 3001 270.650000 270.65 270.65 3002 2956.953333 65.26 5760.00 3003 75.290000 75.29 75.29 3004 1983.430000 1983.43 1983.43 3005 549.500000 150.50 948.50 3007 2400.600000 2400.60 2400.60 3008 250.450000 250.45 250.45 3009 1295.450000 110.50 2480.40
Python Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
Previous: Write a Pandas program to split the following given dataframe into groups based on school code and call a specific group with the name of the group.
Next: Write a Pandas program to split a dataset to group by two columns and count by each row.
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://w3resource.com/python-exercises/pandas/groupby/python-pandas-groupby-exercise-7.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics