w3resource

Pandas: GroupBy with condition of two labels and ranges


29. Grouping by Salesman ID into Ranges

Write a Pandas program to split a given dataset using group by on specified column into two labels and ranges.

Split the group on 'salesman_id',
Ranges:
1) (5001...5006)
2) (5007..5012)

Test Data:

    salesman_id  sale_jan
0          5001    150.50
1          5002    270.65
2          5003     65.26
3          5004    110.50
4          5005    948.50
5          5006   2400.60
6          5007   1760.00
7          5008   2983.43
8          5009    480.40
9          5010   1250.45
10         5011     75.29
11         5012   1045.60   

Sample Solution:

Python Code :

import pandas as pd
import numpy as np
pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
df = pd.DataFrame({
'salesman_id': [5001,5002,5003,5004,5005,5006,5007,5008,5009,5010,5011,5012],
'sale_jan':[150.5, 270.65, 65.26, 110.5, 948.5, 2400.6, 1760, 2983.43, 480.4,  1250.45, 75.29,1045.6]})
print("Original Orders DataFrame:")
print(df)
result = df.groupby(pd.cut(df['salesman_id'], 
                  bins=[0,5006,np.inf],  
                  labels=['S1', 'S2']))['sale_jan'].sum().reset_index()
print("\nGroupBy with condition of  two labels and ranges:")
print(result)

Sample Output:

Original Orders DataFrame:
    salesman_id  sale_jan
0          5001    150.50
1          5002    270.65
2          5003     65.26
3          5004    110.50
4          5005    948.50
5          5006   2400.60
6          5007   1760.00
7          5008   2983.43
8          5009    480.40
9          5010   1250.45
10         5011     75.29
11         5012   1045.60

GroupBy with condition of  two labels and ranges:
  salesman_id  sale_jan
0          S1   3946.01
1          S2   7595.17

For more Practice: Solve these Related Problems:

  • Write a Pandas program to group a dataframe by salesman_id and then assign each salesman to a range label based on their id.
  • Write a Pandas program to split the dataframe into two groups based on whether salesman_id falls within (5001…5006) or (5007…5012).
  • Write a Pandas program to group the dataset by salesman_id and then create a new column indicating the range category.
  • Write a Pandas program to segment salesman_id values into two bins and then group by these bins to calculate summary statistics.

Python Code Editor:

Have another way to solve this solution? Contribute your code (and comments) through Disqus.

Previous: Write a Pandas program to split a given dataset, group by one column and remove those groups if all the values of a specific columns are not available.
Next: Write a Pandas program to split the following dataset using group by on first column and aggregate over multiple lists on second column.

What is the difficulty level of this exercise?

Test your Programming skills with w3resource's quiz.



Follow us on Facebook and Twitter for latest update.