Pandas: Split a specified dataframe into groups by school code and get mean, min, and max value of age with customized column name for each school
Pandas Grouping and Aggregating: Split-Apply-Combine Exercise-22 with Solution
Write a Pandas program to split the following dataframe into groups by school code and get mean, min, and max value of age with customized column name for each school.
Test Data:
school class name date_Of_Birth age height weight address S1 s001 V Alberto Franco 15/05/2002 12 173 35 street1 S2 s002 V Gino Mcneill 17/05/2002 12 192 32 street2 S3 s003 VI Ryan Parkes 16/02/1999 13 186 33 street3 S4 s001 VI Eesha Hinton 25/09/1998 13 167 30 street1 S5 s002 V Gino Mcneill 11/05/2002 14 151 31 street2 S6 s004 VI David Parkes 15/09/1997 12 159 32 street4
Sample Solution:
Python Code :
import pandas as pd
pd.set_option('display.max_rows', None)
#pd.set_option('display.max_columns', None)
student_data = pd.DataFrame({
'school_code': ['s001','s002','s003','s001','s002','s004'],
'class': ['V', 'V', 'VI', 'VI', 'V', 'VI'],
'name': ['Alberto Franco','Gino Mcneill','Ryan Parkes', 'Eesha Hinton', 'Gino Mcneill', 'David Parkes'],
'date_Of_Birth ': ['15/05/2002','17/05/2002','16/02/1999','25/09/1998','11/05/2002','15/09/1997'],
'age': [12, 12, 13, 13, 14, 12],
' height ': [173, 192, 186, 167, 151, 159],
'weight': [35, 32, 33, 30, 31, 32],
'address': ['street1', 'street2', 'street3', 'street1', 'street2', 'street4']},
index=['S1', 'S2', 'S3', 'S4', 'S5', 'S6'])
print("Original DataFrame:")
print(student_data)
print('\nMean, min, and max value of age for each school with customized column names:')
grouped_single = student_data.groupby('school_code').agg(Age_Mean = ('age','mean'),Age_Max=('age',max),Age_Min=('age',min))
print(grouped_single)
Sample Output:
Original DataFrame: school_code class name ... height weight address S1 s001 V Alberto Franco ... 173 35 street1 S2 s002 V Gino Mcneill ... 192 32 street2 S3 s003 VI Ryan Parkes ... 186 33 street3 S4 s001 VI Eesha Hinton ... 167 30 street1 S5 s002 V Gino Mcneill ... 151 31 street2 S6 s004 VI David Parkes ... 159 32 street4 [6 rows x 8 columns] Mean, min, and max value of age for each school with customized column names: Age_Mean Age_Max Age_Min school_code s001 12.5 13 12 s002 13.0 14 12 s003 13.0 13 13 s004 12.0 12 12
Note: Run on Spyder Python 3.7.1
Python Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
Next: Write a Pandas program to split the following given datasets into groups on customer id and calculate the number of customers starting with 'C', the list of all products and the difference of maximum purchase amount and minimum purchase amount.What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://w3resource.com/python-exercises/pandas/groupby/python-pandas-groupby-exercise-22.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics