Pandas: Filter by values using Boolean Logic in a given dataframe
Pandas Filter: Exercise-6 with Solution
Write a Pandas program to find out the alcohol consumption of a given year from the world alcohol consumption dataset.
Test Data:
Year WHO region Country Beverage Types Display Value 0 1986 Western Pacific Viet Nam Wine 0.00 1 1986 Americas Uruguay Other 0.50 2 1985 Africa Cte d'Ivoire Wine 1.62 3 1986 Americas Colombia Beer 4.27 4 1987 Americas Saint Kitts and Nevis Beer 1.98
Sample Solution:
Python Code :
import pandas as pd
# World alcohol consumption data
w_a_con = pd.read_csv('world_alcohol.csv')
print("World alcohol consumption sample data:")
print(w_a_con.head())
print("\nThe world alcohol consumption details in the year 1985:")
print(w_a_con[w_a_con['Year']==1985].head(10))
print("\nThe world alcohol consumption details in the year 1989:")
print(w_a_con[w_a_con['Year']==1989].head(10))
Sample Output:
World alcohol consumption sample data: Year WHO region ... Beverage Types Display Value 0 1986 Western Pacific ... Wine 0.00 1 1986 Americas ... Other 0.50 2 1985 Africa ... Wine 1.62 3 1986 Americas ... Beer 4.27 4 1987 Americas ... Beer 1.98 [5 rows x 5 columns] The world alcohol consumption details in the year 1985: Year WHO region ... Beverage Types Display Value 2 1985 Africa ... Wine 1.62 7 1985 Africa ... Spirits 0.39 12 1985 Western Pacific ... Beer 0.00 14 1985 Western Pacific ... Spirits 0.05 24 1985 Africa ... Other NaN 26 1985 Europe ... Wine 1.36 33 1985 Africa ... Other 0.00 35 1985 Americas ... Spirits 2.24 44 1985 Europe ... Other NaN 50 1985 Europe ... Other 0.30 [10 rows x 5 columns] The world alcohol consumption details in the year 1989: Year WHO region ... Beverage Types Display Value 11 1989 Americas ... Beer 0.62 17 1989 Africa ... Beer 2.23 21 1989 Americas ... Spirits 4.51 32 1989 Africa ... Beer 1.60 45 1989 Africa ... Beer 0.19 55 1989 Americas ... Wine 0.04 57 1989 Europe ... Wine 5.10 59 1989 Eastern Mediterranean ... Other 0.00 64 1989 Americas ... Beer 1.26 65 1989 Eastern Mediterranean ... Beer 0.00 [10 rows x 5 columns]
Click to download world_alcohol.csv
Python Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
Previous:Write a Pandas program to remove the duplicates from 'WHO region' column of World alcohol consumption dataset.
Next: Write a Pandas program to find out the alcohol consumption details in the year '1987' or '1989' from the world alcohol consumption dataset.
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://w3resource.com/python-exercises/pandas/filter/pandas-filter-exercise-6.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics