w3resource

Pandas - Applying a Custom Function to Rows using apply()


Pandas: Custom Function Exercise-2 with Solution


Write a Pandas program that apply a custom function to each row using apply() function.

In this exercise, we have applied a custom function that calculates the sum of each row in a DataFrame using apply() function.

Sample Solution:

Code :

import pandas as pd

# Create a sample DataFrame
df = pd.DataFrame({
    'A': [1, 2, 3],
    'B': [4, 5, 6],
    'C': [7, 8, 9]
})

# Define a custom function to calculate the sum of a row
def row_sum(row):
    return row.sum()

# Apply the custom function row-wise
df['Row_Sum'] = df.apply(row_sum, axis=1)

# Output the result
print(df)

Output:

   A  B  C  Row_Sum
0  1  4  7       12
1  2  5  8       15
2  3  6  9       18                                     

Explanation:

  • Created a DataFrame with columns 'A', 'B', 'C'.
  • Defined a function row_sum() to calculate the sum of a row.
  • Applied row_sum() row-wise using apply() with axis=1.
  • Added the row sums as a new column to the DataFrame.

Python-Pandas Code Editor:

Have another way to solve this solution? Contribute your code (and comments) through Disqus.

Previous: Pandas - Applying a Custom Function Element-wise with applymap().
Next: Pandas - Applying a Custom Function to Columns using apply().

What is the difficulty level of this exercise?

Test your Programming skills with w3resource's quiz.



Become a Patron!

Follow us on Facebook and Twitter for latest update.