NumPy: Extract any array of shape from a given array of integer values
Extract shape (6,6,3) array from a 12x12x4 matrix.
Write a NumPy program to create a 12x12x4 array with random values and extract any array of shape(6,6,3) from the said array.
Sample Solution:
Python Code:
# Importing NumPy library
import numpy as np
# Creating a NumPy array of shape (8, 8, 3) filled with random float values between 0 and 1
nums = np.random.random((8, 8, 3))
# Displaying the original array
print("Original array:")
print(nums)
# Extracting a sub-array of shape (6, 6, 3) from the original array using slicing
new_nums = nums[:6, :6, :]
# Displaying the extracted sub-array
print("\nExtract array of shape (6, 6, 3) from the said array:")
print(new_nums)
Sample Output:
Original array: [[[0.67420382 0.5592584 0.27096382] [0.2896283 0.68346522 0.13996167] [0.74283318 0.06323309 0.0980022 ] [0.43203954 0.38888969 0.44801756] [0.04391897 0.4851516 0.34044817] [0.2202623 0.81434798 0.51900666] [0.12442371 0.91247823 0.01874549] [0.2287782 0.88089638 0.40583551]] [[0.42389039 0.21162537 0.39794135] [0.70118645 0.77166133 0.02891853] [0.13635083 0.77918942 0.93913105] [0.82898906 0.7946305 0.01150909] [0.05929642 0.59762989 0.7248887 ] [0.15162473 0.55354106 0.92956369] [0.21183182 0.92999156 0.57835296] [0.41929845 0.19565816 0.18662498]] [[0.87032715 0.50662785 0.54217065] [0.82355975 0.20349718 0.01538959] [0.24959705 0.62056295 0.07042258] [0.64422139 0.88416751 0.49174671] [0.21436044 0.55439367 0.61435127] [0.38492133 0.66637382 0.66080096] [0.3957137 0.48913863 0.67103063] [0.81766502 0.38401956 0.06543795]] [[0.78656194 0.86104692 0.70951371] [0.50050861 0.14680231 0.08608443] [0.73766323 0.32358634 0.70397593] [0.04155761 0.23332385 0.98193348] [0.60442283 0.6441864 0.40536901] [0.81750344 0.87604709 0.03573838] [0.14154893 0.24558416 0.62685956] [0.44853079 0.90103491 0.4339039 ]] [[0.51162248 0.32017957 0.28754968] [0.27526172 0.06626226 0.60503387] [0.90903854 0.05226501 0.26241159] [0.73163092 0.98252245 0.44887237] [0.94349225 0.14615167 0.83662707] [0.25880778 0.61251959 0.82794232] [0.00672891 0.1271131 0.65880109] [0.88851577 0.75109775 0.56399842]] [[0.85965509 0.11357479 0.27325381] [0.74156642 0.35108524 0.40305073] [0.44791592 0.28270286 0.45377936] [0.01543443 0.14978493 0.47738367] [0.63671823 0.75239388 0.59118693] [0.55932007 0.32759274 0.25519358] [0.79183605 0.18399144 0.84579649] [0.06608463 0.63129404 0.78672545]] [[0.23577256 0.24679561 0.46901338] [0.43949749 0.93467498 0.9023869 ] [0.58850225 0.24534939 0.92965553] [0.26322984 0.13130557 0.67981953] [0.36389878 0.74552644 0.25606283] [0.77564163 0.50464125 0.3598317 ] [0.49057984 0.9482408 0.84635511] [0.70071485 0.43268376 0.39706312]] [[0.28021231 0.47537742 0.72971633] [0.87380873 0.83031311 0.56713737] [0.23093306 0.22830678 0.54439754] [0.88130002 0.37081258 0.78148687] [0.00318428 0.62297164 0.58875116] [0.68102061 0.31822913 0.04432477] [0.70410386 0.56770957 0.42998752] [0.5891714 0.25692428 0.19184309]]] Extract array of shape (6,6,3) from the said array: [[[0.67420382 0.5592584 0.27096382] [0.2896283 0.68346522 0.13996167] [0.74283318 0.06323309 0.0980022 ] [0.43203954 0.38888969 0.44801756] [0.04391897 0.4851516 0.34044817] [0.2202623 0.81434798 0.51900666]] [[0.42389039 0.21162537 0.39794135] [0.70118645 0.77166133 0.02891853] [0.13635083 0.77918942 0.93913105] [0.82898906 0.7946305 0.01150909] [0.05929642 0.59762989 0.7248887 ] [0.15162473 0.55354106 0.92956369]] [[0.87032715 0.50662785 0.54217065] [0.82355975 0.20349718 0.01538959] [0.24959705 0.62056295 0.07042258] [0.64422139 0.88416751 0.49174671] [0.21436044 0.55439367 0.61435127] [0.38492133 0.66637382 0.66080096]] [[0.78656194 0.86104692 0.70951371] [0.50050861 0.14680231 0.08608443] [0.73766323 0.32358634 0.70397593] [0.04155761 0.23332385 0.98193348] [0.60442283 0.6441864 0.40536901] [0.81750344 0.87604709 0.03573838]] [[0.51162248 0.32017957 0.28754968] [0.27526172 0.06626226 0.60503387] [0.90903854 0.05226501 0.26241159] [0.73163092 0.98252245 0.44887237] [0.94349225 0.14615167 0.83662707] [0.25880778 0.61251959 0.82794232]] [[0.85965509 0.11357479 0.27325381] [0.74156642 0.35108524 0.40305073] [0.44791592 0.28270286 0.45377936] [0.01543443 0.14978493 0.47738367] [0.63671823 0.75239388 0.59118693] [0.55932007 0.32759274 0.25519358]]]
Explanation:
In the above exercise -
nums = np.random.random((8, 8, 3)): This code first creates a 3-dimensional array nums with shape (8, 8, 3) filled with random values between 0 and 1.
new_nums = nums[:6, :6, :]: This code slices the “nums” array to create a new array new_nums. The slicing operation is performed on the first two dimensions (axis 0 and axis 1) using the slice :6, which means selecting elements from the beginning up to (but not including) index 6. The third dimension (axis 2) is kept entirely using the slice :.
Python-Numpy Code Editor:
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics