Perform image processing tasks using SciPy's ndimage module
NumPy: Integration with SciPy Exercise-15 with Solution
Write a NumPy program to create a NumPy array and use SciPy's ndimage module to perform image processing tasks, such as filtering and edge detection.
Sample Solution:
Python Code:
import numpy as np # Import NumPy library
from scipy import ndimage # Import ndimage module from SciPy
import matplotlib.pyplot as plt # Import matplotlib for plotting
# Create a NumPy array representing a simple 2D image (e.g., a checkerboard pattern)
def create_checkerboard(size=8):
"""Create a checkerboard pattern."""
row_even = [1, 0] * size
row_odd = [0, 1] * size
board = []
for i in range(size):
if i % 2 == 0:
board.append(row_even)
else:
board.append(row_odd)
return np.array(board)
# Generate a checkerboard image
image = create_checkerboard(8)
# Apply Gaussian filter to the image
filtered_image = ndimage.gaussian_filter(image, sigma=1)
# Apply Sobel filter for edge detection
sobel_h = ndimage.sobel(image, axis=0) # Horizontal edges
sobel_v = ndimage.sobel(image, axis=1) # Vertical edges
sobel_combined = np.hypot(sobel_h, sobel_v) # Combine both directions
# Plot the original and processed images
plt.figure(figsize=(12, 8))
plt.subplot(2, 2, 1)
plt.title("Original Image")
plt.imshow(image, cmap='gray', interpolation='nearest')
plt.axis('off')
plt.subplot(2, 2, 2)
plt.title("Gaussian Filtered Image")
plt.imshow(filtered_image, cmap='gray', interpolation='nearest')
plt.axis('off')
plt.subplot(2, 2, 3)
plt.title("Sobel Edge Detection (Horizontal)")
plt.imshow(sobel_h, cmap='gray', interpolation='nearest')
plt.axis('off')
plt.subplot(2, 2, 4)
plt.title("Sobel Edge Detection (Combined)")
plt.imshow(sobel_combined, cmap='gray', interpolation='nearest')
plt.axis('off')
# Display the plots
plt.tight_layout()
plt.show()
Output:
Explanation:
- Import Libraries:
- Import the NumPy library for creating and manipulating arrays.
- Import the "ndimage" module from SciPy for image processing tasks.
- Import Matplotlib for plotting the images.
- Create a Checkerboard Pattern:
- Define a function create_checkerboard(size=8) to generate a checkerboard pattern as a 2D NumPy array.
- Use this function to create a sample image for processing.
- Apply Gaussian Filter:
- Use ndimage.gaussian_filter(image, sigma=1) to apply a Gaussian filter to the image. The sigma parameter controls the extent of the blurring.
- Apply Sobel Filter for Edge Detection:
- Use ndimage.sobel(image, axis=0) to detect horizontal edges in the image.
- Use ndimage.sobel(image, axis=1) to detect vertical edges in the image.
- Combine the horizontal and vertical edges using np.hypot(sobel_h, sobel_v) to create a comprehensive edge detection result.
- Plot the Original and Processed Images:
- Use Matplotlib to plot the original image, the Gaussian filtered image, the Sobel horizontal edges, and the combined Sobel edges in a 2x2 grid.
- Display the Plots:
- Use plt.tight_layout() to adjust the layout and plt.show() to display the plots.
Python-Numpy Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
Previous: Perform optimization using SciPy's optimize module to find function minimum.
Next: Generate and analyze synthetic data with NumPy and SciPy.
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://w3resource.com/python-exercises/numpy/perform-image-processing-tasks-using-scipys-ndimage-module.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics