Python Challenges: Print a truth table for an infix logical expression
Python Challenges - 1: Exercise-56 with Solution
Write a Python program to print a truth table for an infix logical expression.
Sample Solution:
Python Code:
def table( expr ):
"""
Ref.: https://bit.ly/3cWJD22
table('A and not B')
A B A and not B
True True False
True False True
False True False
False False False
table('not(A imp B)')
A B not(A imp B)
True True False
True False True
False True False
False False False
"""
# convert infix expression to prefix (function call) form
def toPrefix( expr ):
from re import finditer
# Pop and operator of the operators stack and one or two operands of the
# operand stack, and assembled into a call to the appropriate function.
# The function call is pushed onto the operand stack
def reduce( operators, operands ):
op = operators.pop()
right = operands.pop()
if op == 'not':
operands.append( "%s(%s)" % ( op.upper(), right ))
else:
left = operands.pop()
operands.append( "%s(%s,%s)" % ( op.upper(), left, right ))
prec = { '(' : 0, # operator precedence
'imp' : 1,
'or' : 2, 'nor' : 3,
'xor' : 3, 'equ' : 3,
'and' : 4, 'nand': 4,
'not' : 5
}
# operand and operator stacks
operands = []
operators = []
# Regular expression for parsing the infix expression. It has three
# parenthesized groups, which are returned in a tuple by the groups()
# method of a match object (mo). The tuple is unpacked into
# corresponding variables in the for-statement.
#
# paren | logical operators (curop) |ident
regex = r"([()])|(not|and|nand|or|nor|xor|equ|imp)|(\w+)"
for paren,curop,ident in (mo.groups() for mo in finditer(regex,expr)):
# identifiers (i.e., variable names) are pushed on the operand stack
if ident is not None:
operands.append( ident )
# left parens are pushed on the operator stack
elif paren == '(':
operators.append( paren )
# for a right paren, the stacks are reduced until the matching
# left paren is encountered. The left paren is discarded.
elif paren == ')':
while operators[-1] != '(':
reduce( operators, operands )
_ = operators.pop()
else:
# while the operator being parsed (curop) has a lower
# precedence than the one on the top of the operator stack,
# reduce the higher priority operator. Then push the curop
# onto the operator stack
while operators != [] and prec[ curop ] <= prec[ operators[-1] ]:
reduce( operators, operands )
operators.append( curop )
# after the input expression is exhausted, reduce the operands on the
# operand stack until it is empty
while operators != []:
reduce( operators, operands )
return operands.pop()
def NOT(a): return not a
def AND(a,b): return a and b
def NAND(a,b): return not AND(a,b)
def XOR(a,b): return a ^ b
def EQU(a,b): return not XOR(a,b)
def OR(a,b): return a or b
def NOR(a,b): return not OR(a,b)
def IMP(a,b): return not a or b
stmnt = compile(toPrefix(expr),'','eval')
format = "%-5s %-5s %-5s"
print(format % (' A ',' B ',expr))
for A in (True,False):
for B in (True,False):
print(format % (A,B,eval(stmnt,locals())))
table('and(A,B)')
table('or(A,B)')
table('not(A,B)')
table('nand(A,B)')
table('xor(A,B)')
table('equ(A,B)')
table('imp(A,B)')
table('nor(A,B)')
table('A and not B')
table('not(A imp B)')
Sample Output:
A B and(A,B) True True True True False False False True False False False False A B or(A,B) True True True True False True False True True False False False A B not(A,B) True True False True False True False True False False False True A B nand(A,B) True True False True False True False True True False False True A B xor(A,B) True True False True False True False True True False False False A B equ(A,B) True True True True False False False True False False False True A B imp(A,B) True True True True False False False True True False False True A B nor(A,B) True True False True False False False True False False False True A B A and not B True True False True False True False True False False False False A B not(A imp B) True True False True False True False True False False False False
Flowchart:
Python Code Editor:
Contribute your code and comments through Disqus.
Previous: Write a Python program to compute the person's itinerary.
Next: Write a Python program to generate list with 'width'-bit gray code.
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://w3resource.com/python-exercises/challenges/1/python-challenges-1-exercise-56.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics