w3resource

Python Challenges: Print a truth table for an infix logical expression

Python Challenges - 1: Exercise-56 with Solution

Write a Python program to print a truth table for an infix logical expression.

Sample Solution:

Python Code:

def table( expr ):
    """
     Ref.: https://bit.ly/3cWJD22
    table('A and not B')
      A     B   A and not B
    True  True  False
    True  False True
    False True  False
    False False False

    table('not(A imp B)')
      A     B   not(A imp B)
    True  True  False
    True  False True
    False True  False
    False False False
    """

    # convert infix expression to prefix (function call) form
    def toPrefix( expr ):
        from re import finditer

        # Pop and operator of the operators stack and one or two operands of the
        # operand stack, and assembled into a call to the appropriate function.
        # The function call is pushed onto the operand stack
        def reduce( operators, operands ):
            op = operators.pop()
            right = operands.pop()
            if op == 'not':
                operands.append( "%s(%s)" % ( op.upper(), right ))
            else:
                left = operands.pop()
                operands.append( "%s(%s,%s)" % ( op.upper(), left, right ))

        prec = { '('   : 0,                 # operator precedence
                 'imp' : 1,
                 'or'  : 2, 'nor' : 3,
                 'xor' : 3, 'equ' : 3,
                 'and' : 4, 'nand': 4,
                 'not' : 5
                 }

        # operand and operator stacks
        operands  = []
        operators = []

        # Regular expression for parsing the infix expression.  It has three
        # parenthesized groups, which are returned in a tuple by the groups()
        # method of a match object (mo).  The tuple is unpacked into
        # corresponding variables in the for-statement.
        #
        #         paren |    logical operators (curop)    |ident
        regex = r"([()])|(not|and|nand|or|nor|xor|equ|imp)|(\w+)"

        for paren,curop,ident in (mo.groups() for mo in finditer(regex,expr)):
            # identifiers (i.e., variable names) are pushed on the operand stack
            if ident is not None:
                operands.append( ident )

            # left parens are pushed on the operator stack
            elif paren == '(':
                operators.append( paren )

            # for a right paren, the stacks are reduced until the matching
            # left paren is encountered.  The left paren is discarded.
            elif paren == ')':
                while operators[-1] != '(':
                    reduce( operators, operands )

                _ = operators.pop()

            else:
                # while the operator being parsed (curop) has a lower
                # precedence than the one on the top of the operator stack,
                # reduce the higher priority operator.  Then push the curop
                # onto the operator stack
                while operators != [] and prec[ curop ] <= prec[ operators[-1] ]:
                    reduce( operators, operands )

                operators.append( curop )

        # after the input expression is exhausted, reduce the operands on the
        # operand stack until it is empty
        while operators != []:
            reduce( operators, operands )

        return operands.pop()

    def NOT(a): return not a
    def AND(a,b): return a and b
    def NAND(a,b): return not AND(a,b)
    def XOR(a,b): return a ^ b
    def EQU(a,b): return not XOR(a,b)
    def OR(a,b): return a or b
    def NOR(a,b): return not OR(a,b)
    def IMP(a,b): return not a or b

    stmnt = compile(toPrefix(expr),'','eval')

    format = "%-5s %-5s %-5s"
    print(format % ('  A  ','  B  ',expr))

    for A in (True,False):
        for B in (True,False):
            print(format % (A,B,eval(stmnt,locals())))

table('and(A,B)')
table('or(A,B)')
table('not(A,B)')
table('nand(A,B)')
table('xor(A,B)')
table('equ(A,B)')
table('imp(A,B)')
table('nor(A,B)')
table('A and not B')
table('not(A imp B)')

Sample Output:

  A     B   and(A,B)
True  True  True 
True  False False
False True  False
False False False
  A     B   or(A,B)
True  True  True 
True  False True 
False True  True 
False False False
  A     B   not(A,B)
True  True  False
True  False True 
False True  False
False False True 
  A     B   nand(A,B)
True  True  False
True  False True 
False True  True 
False False True 
  A     B   xor(A,B)
True  True  False
True  False True 
False True  True 
False False False
  A     B   equ(A,B)
True  True  True 
True  False False
False True  False
False False True 
  A     B   imp(A,B)
True  True  True 
True  False False
False True  True 
False False True 
  A     B   nor(A,B)
True  True  False
True  False False
False True  False
False False True 
  A     B   A and not B
True  True  False
True  False True 
False True  False
False False False
  A     B   not(A imp B)
True  True  False
True  False True 
False True  False
False False False

Flowchart:

Python Flowchart: Print a truth table for an infix logical expression.

Python Code Editor:

Contribute your code and comments through Disqus.

Previous: Write a Python program to compute the person's itinerary.
Next: Write a Python program to generate list with 'width'-bit gray code.

What is the difficulty level of this exercise?

Test your Programming skills with w3resource's quiz.



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://w3resource.com/python-exercises/challenges/1/python-challenges-1-exercise-56.php