w3resource

Java Project - Armstrong Number Checker


Armstrong Number Checker - Loops and Recursion Solutions:

Armstrong Number Checker :

Check if a number is an Armstrong number.

This project checks if a number is an Armstrong number (a number equal to the sum of its digits each raised to the power of the number of digits). The user inputs a number, and the program returns whether it is an Armstrong number.

Input: A number.
Output: Whether the number is an Armstrong number or not.

Example:

  • Input: 153
  • Output: "Armstrong number"
  • Input: 123
  • Output: "Not an Armstrong number"

Solution 1: Armstrong Number Checker Using Loops

Code:

import java.util.Scanner;

public class ArmstrongNumberUsingLoops {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        
        // Taking user input
        System.out.print("Enter a number: ");
        int number = scanner.nextInt();
        int originalNumber = number;
        int result = 0;
        int numberOfDigits = 0;

        // Find the number of digits in the input number
        int temp = number;
        while (temp != 0) {
            temp /= 10;
            numberOfDigits++;
        }

        // Calculate the sum of each digit raised to the power of the number of digits
        while (number != 0) {
            int digit = number % 10;
            result += Math.pow(digit, numberOfDigits); // Raise the digit to the power of numberOfDigits
            number /= 10;
        }

        // Check if the sum equals the original number
        if (result == originalNumber) {
            System.out.println(originalNumber + " is an Armstrong number.");
        } else {
            System.out.println(originalNumber + " is not an Armstrong number.");
        }

        scanner.close(); // Close the scanner resource
    }
}

Output:

Enter a number:  153
153 is an Armstrong number.
Enter a number:  237
237 is not an Armstrong number

Explanation :

  • Input: The program prompts the user to enter a number.
  • Count Digits: A loop is used to count the number of digits in the input number.
  • Armstrong Calculation: The program calculates the sum of each digit raised to the power of the number of digits.
  • Check Armstrong: If the calculated sum equals the original number, it is an Armstrong number; otherwise, it is not.
  • Close Scanner: The scanner is closed to free up system resources.

Solution 2: Armstrong Number Checker using Recursion

Code:

import java.util.Scanner;

public class ArmstrongNumberUsingRecursion {

    // Recursive function to calculate the sum of digits raised to the power
    public static int armstrongSum(int number, int numberOfDigits) {
        if (number == 0) {
            return 0;
        }
        int digit = number % 10;
        return (int)Math.pow(digit, numberOfDigits) + armstrongSum(number / 10, numberOfDigits);
    }

    // Helper function to count the number of digits
    public static int countDigits(int number) {
        if (number == 0) {
            return 0;
        }
        return 1 + countDigits(number / 10);
    }

    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);

        // Taking user input
        System.out.print("Enter a number: ");
        int number = scanner.nextInt();
        int originalNumber = number;

        // Find the number of digits
        int numberOfDigits = countDigits(number);

        // Check if the sum of the powers equals the original number
        if (armstrongSum(number, numberOfDigits) == originalNumber) {
            System.out.println(originalNumber + " is an Armstrong number.");
        } else {
            System.out.println(originalNumber + " is not an Armstrong number.");
        }

        scanner.close(); // Close the scanner resource
    }
}  

Output:

Enter a number:  370
370 is an Armstrong number.
Enter a number:  371
371 is an Armstrong number.

Explanation:

  • Input: The program prompts the user to enter a number.
  • Recursive Count Digits: A recursive method is used to count the number of digits.
  • Recursive Armstrong Calculation: A recursive method calculates the sum of the digits raised to the power of the number of digits.
  • Check Armstrong: The calculated sum is compared to the original number to determine if it is an Armstrong number.
  • Close Scanner: The scanner is closed to free up system resources.

Java Code Editor:




Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://w3resource.com/projects/java/java-project-armstrong-number-checker.php