w3resource

MongoDB Exercise - Find the restaurant name, borough, longitude and latitude and cuisine for those restaurants which contain Mad as first three letters of its name


Write a MongoDB query to find the restaurant name, borough, longitude and attitude and cuisine for those restaurants which contain 'Mad' as first three letters of its name.

Structure of 'restaurants' collection :

{
  "address": {
     "building": "1007",
     "coord": [ -73.856077, 40.848447 ],
     "street": "Morris Park Ave",
     "zipcode": "10462"
  },
  "borough": "Bronx",
  "cuisine": "Bakery",
  "grades": [
     { "date": { "$date": 1393804800000 }, "grade": "A", "score": 2 },
     { "date": { "$date": 1378857600000 }, "grade": "A", "score": 6 },
     { "date": { "$date": 1358985600000 }, "grade": "A", "score": 10 },
     { "date": { "$date": 1322006400000 }, "grade": "A", "score": 9 },
     { "date": { "$date": 1299715200000 }, "grade": "B", "score": 14 }
  ],
  "name": "Morris Park Bake Shop",
  "restaurant_id": "30075445"
}

Query:

db.restaurants.find(
                   { name : 
                     { $regex : /^Mad/i, } 
                   },
                       {
                         "name":1,
                         "borough":1,
                         "address.coord":1,
                         "cuisine" :1
                        }
                   );

Output:

{ "_id" : ObjectId("564c2d949eb21ad392f17b04"), "address" : { "coord" : [ -73.9860597, 40.7431194 ] }, "borough" : "Manhattan", "cuisine" : "American ", "name" : "Madison Square" }
{ "_id" : ObjectId("564c2d949eb21ad392f17bd5"), "address" : { "coord" : [ -73.98302199999999, 40.742313 ] }, "borough" : "Manhattan", "cuisine" : "Indian", "name" : "Madras Mahal" }
{ "_id" : ObjectId("564c2d949eb21ad392f17e82"), "address" : { "coord" : [ -74.000002, 40.72735 ] }, "borough" : "Manhattan", "cuisine" : "American ", "name" : "Madame X" }
{ "_id" : ObjectId("564c2d949eb21ad392f17f31"), "address" : { "coord" : [ -73.98171959999999, 40.7499406 ] }, "borough" : "Manhattan", "cuisine" : "French", "name" : "Madison Bistro" }
{ "_id" : ObjectId("564c2d949eb21ad392f17fba"), "address" : { "coord" : [ -73.9717845, 40.6897199 ] }, "borough" : "Brooklyn", "cuisine" : "African", "name" : "Madiba" }
{ "_id" : ObjectId("564c2d949eb21ad392f182bf"), "address" : { "coord" : [ -73.9040753, 40.9069011 ] }, "borough" : "Bronx", "cuisine" : "Italian", "name" : "Madison'S" }
{ "_id" : ObjectId("564c2d949eb21ad392f1833d"), "address" : { "coord" : [ -73.9886598, 40.7565811 ] }, "borough" : "Manhattan", "cuisine" : "Hotdogs", "name" : "Madame Tussaud'S" }
{ "_id" : ObjectId("564c2d949eb21ad392f18375"), "address" : { "coord" : [ -73.95623719999999, 40.7761697 ] }, "borough" : "Manhattan", "cuisine" : "American ", "name" : "Mad River Bar & Grille" }
{ "_id" : ObjectId("564c2d949eb21ad392f18b2c"), "address" : { "coord" : [ -73.8885928, 40.8731713 ] }, "borough" : "Bronx", "cuisine" : "American ", "name" : "Maddens Pub" }
{ "_id" : ObjectId("564c2d949eb21ad392f18cf4"), "address" : { "coord" : [ -73.981973, 40.741028 ] }, "borough" : "Manhattan", "cuisine" : "American ", "name" : "Mad Hatter Saloon" }
{ "_id" : ObjectId("564c2d949eb21ad392f18e3f"), "address" : { "coord" : [ -73.8077582, 40.7633975 ] }, "borough" : "Queens", "cuisine" : "Korean", "name" : "Mad For Chicken" }
{ "_id" : ObjectId("564c2d949eb21ad392f192e7"), "address" : { "coord" : [ -73.9857545, 40.7498305 ] }, "borough" : "Manhattan", "cuisine" : "Korean", "name" : "Madangsui" }
{ "_id" : ObjectId("564c2d949eb21ad392f1951d"), "address" : { "coord" : [ -73.97943400000001, 40.7521259 ] }, "borough" : "Manhattan", "cuisine" : "American ", "name" : "Madison & Vine" }
{ "_id" : ObjectId("564c2d949eb21ad392f1955f"), "address" : { "coord" : [ -74.0103118, 40.7042077 ] }, "borough" : "Manhattan", "cuisine" : "Mexican", "name" : "Mad Dog & Beans" }
{ "_id" : ObjectId("564c2d949eb21ad392f196fc"), "address" : { "coord" : [ -73.96974890000001, 40.64353699999999 ] }, "borough" : "Brooklyn", "cuisine" : "Indian", "name" : "Madina Restaurant" }
{ "_id" : ObjectId("564c2d949eb21ad392f1993c"), "address" : { "coord" : [ -74.002191, 40.7076992 ] }, "borough" : "Manhattan", "cuisine" : "Café/Coffee/Tea", "name" : "Made Fresh Daily" }
{ "_id" : ObjectId("564c2d949eb21ad392f199a6"), "address" : { "coord" : [ -73.924184, 40.68904 ] }, "borough" : "Brooklyn", "cuisine" : "Pizza", "name" : "Maddy'S" }
{ "_id" : ObjectId("564c2d949eb21ad392f19bf7"), "address" : { "coord" : [ -73.9650056, 40.7559881 ] }, "borough" : "Manhattan", "cuisine" : "American ", "name" : "Madison Restaurant" }
{ "_id" : ObjectId("564c2d949eb21ad392f1a258"), "address" : { "coord" : [ -73.95314379999999, 40.7445573 ] }, "borough" : "Queens", "cuisine" : "Latin (Cuban, Dominican, Puerto Rican, South & Central American)", "name" : "Madera Cuban Grill" }
{ "_id" : ObjectId("564c2d949eb21ad392f1aa1a"), "address" : { "coord" : [ -73.976501, 40.7570304 ] }, "borough" : "Manhattan", "cuisine" : "American ", "name" : "Madison Deli" }
Type "it" for more

Explanation:

The said query in MongoDB that searches for a list of all restaurants where the name field starts with "Mad" (case-insensitive), along with their respective name, borough, address.coord, and cuisine field values.
The $regex regular expression works on the name field and here the /^Mad/i pattern, which matches any string that starts with "Mad" (case-insensitive).

Note: This output is generated using MongoDB server version 3.6

Improve this sample solution and post your code through Disqus.

Previous: Find the restaurant's name, borough, longitude, attitude and cuisine if the restaurant contains three letters 'mon'.
Next: Restaurants with less than 5 grades.

What is the difficulty level of this exercise?



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://w3resource.com/mongodb-exercises/mongodb-exercise-32.php