w3resource

Python Scikit-learn: Create some basic statistical details like percentile, mean etc

Python Machine learning Logistic Regression: Exercise-1 with Solution

Write a Python program to view some basic statistical details like percentile, mean, std etc. of the species of ‘Iris-setosa’, ‘Iris-versicolor’ and ‘Iris-virginica’.

Sample Solution:

Python Code:

import pandas as pd
data = pd.read_csv("iris.csv")
print('Iris-setosa')
setosa = data['Species'] == 'Iris-setosa'
print(data[setosa].describe())
print('\nIris-versicolor')
setosa = data['Species'] == 'Iris-versicolor'
print(data[setosa].describe())
print('\nIris-virginica')
setosa = data['Species'] == 'Iris-virginica'
print(data[setosa].describe())

Sample Output:

Iris-setosa
             Id  SepalLengthCm  SepalWidthCm  PetalLengthCm  PetalWidthCm
count  50.00000       50.00000     50.000000      50.000000      50.00000
mean   25.50000        5.00600      3.418000       1.464000       0.24400
std    14.57738        0.35249      0.381024       0.173511       0.10721
min     1.00000        4.30000      2.300000       1.000000       0.10000
25%    13.25000        4.80000      3.125000       1.400000       0.20000
50%    25.50000        5.00000      3.400000       1.500000       0.20000
75%    37.75000        5.20000      3.675000       1.575000       0.30000
max    50.00000        5.80000      4.400000       1.900000       0.60000

Iris-versicolor
              Id  SepalLengthCm  SepalWidthCm  PetalLengthCm  PetalWidthCm
count   50.00000      50.000000     50.000000      50.000000     50.000000
mean    75.50000       5.936000      2.770000       4.260000      1.326000
std     14.57738       0.516171      0.313798       0.469911      0.197753
min     51.00000       4.900000      2.000000       3.000000      1.000000
25%     63.25000       5.600000      2.525000       4.000000      1.200000
50%     75.50000       5.900000      2.800000       4.350000      1.300000
75%     87.75000       6.300000      3.000000       4.600000      1.500000
max    100.00000       7.000000      3.400000       5.100000      1.800000

Iris-virginica
              Id  SepalLengthCm  SepalWidthCm  PetalLengthCm  PetalWidthCm
count   50.00000       50.00000     50.000000      50.000000      50.00000
mean   125.50000        6.58800      2.974000       5.552000       2.02600
std     14.57738        0.63588      0.322497       0.551895       0.27465
min    101.00000        4.90000      2.200000       4.500000       1.40000
25%    113.25000        6.22500      2.800000       5.100000       1.80000
50%    125.50000        6.50000      3.000000       5.550000       2.00000
75%    137.75000        6.90000      3.175000       5.875000       2.30000
max    150.00000        7.90000      3.800000       6.900000       2.50000
 

Python Code Editor:


Have another way to solve this solution? Contribute your code (and comments) through Disqus.

Previous: Python Machine learning Iris Basic Exercises Home.
Next: Write a Python program to create a scatter plot using sepal length and petal_width to separate the Species classes.

What is the difficulty level of this exercise?



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://w3resource.com/machine-learning/scikit-learn/iris/python-machine-learning-scikit-learn-logistic-regression-exercise-1.php