w3resource

Java: Find the median of the number inside the window


Median in Sliding Window

Write a Java program to find the median of the numbers inside the window (size k) at each step in a given array of integers with duplicate numbers. Move the window to the array start.

{|1, 2, 3|, 4, 5, 6, 7, 8, 8} -> Return median 2
{1, |2, 3, 4|, 5, 6, 7, 8, 8} -> Return median 3
{1, 2, |3, 4, 5|, 6, 7, 8, 8} -> Return median 4
{1, 2, 3, |4, 5, 6|, 7, 8, 8} -> Return median 5
{1, 2, 3, 4, |5, 6, 7|, 8, 8} -> Return median 6
{1, 2, 3, 4, 5, |6, 7, 8|, 8} -> Return median 7
{1, 2, 3, 4, 5, 6, |7, 8, 8|} -> Return median 8
Result array {2, 3, 4, 5, 6, 7, 8}

Sample Solution:

Java Code:

// Importing necessary Java utilities
import java.util.*;
import java.util.Arrays;
import java.util.LinkedList;

// Defining a class named Solution
public class Solution {
  
  // The main method of the program
  public static void main(String[] args) {
    // Initializing an array and window size 'k'
    int[] main_array = {1, 2, 3, 4, 5, 6, 7, 8, 8};
    int k = 3;
    
    // Displaying the original array and value of 'k'
    System.out.println("\nOriginal array: " + Arrays.toString(main_array));
    System.out.println("\nValue of k: " + k);
    System.out.println("\nResult: ");
    
    // Getting the result of the median sliding window operation
    ArrayList<Integer> result = median_slide_window(main_array, k);
    
    // Displaying the result
    for (int i = 0; i < result.size(); i++) {
      System.out.println(result.get(i));
    }
  }
  
  // Method to compute the median in a sliding window of size 'k'
  public static ArrayList<Integer> median_slide_window(int[] main_array, int k) {
    ArrayList<Integer> result = new ArrayList<>();
    
    // If 'k' is 0 or greater than the length of the array, return an empty result
    if (k == 0 || main_array.length < k) {
      return result;
    }
    
    // PriorityQueues to store elements on the right and left side of the window
    PriorityQueue<Integer> right_num = new PriorityQueue<>(k);
    PriorityQueue<Integer> left_num = new PriorityQueue<>(k, Collections.reverseOrder());

    // Adding elements to the queues for initial window
    for (int i = 0; i < k - 1; ++i) {
      add(right_num, left_num, main_array[i]);
    }

    // Sliding the window and computing median
    for (int i = k - 1; i < main_array.length; ++i) {
      add(right_num, left_num, main_array[i]);
      int median = compute_median(right_num, left_num);
      result.add(median);
      remove(right_num, left_num, main_array[i - k + 1]);
    }
    
    return result; // Returning the result containing medians of the sliding window
  }

  // Method to compute the median from the PriorityQueues
  private static int compute_median(PriorityQueue<Integer> right_num, PriorityQueue<Integer> left_num) {
    if (left_num.isEmpty() && right_num.isEmpty()) {
      return 0; // Return 0 if both queues are empty
    }
    
    // Balancing the queues to get the median
    while (left_num.size() < right_num.size()) {
      left_num.add(right_num.poll());
    }

    while (left_num.size() - right_num.size() > 1) {
      right_num.add(left_num.poll());
    }
    
    return left_num.peek(); // Returning the median element
  }

  // Method to add elements to the PriorityQueues maintaining the order
  private static void add(PriorityQueue<Integer> right_num, PriorityQueue<Integer> left_num, int num) {
    if (left_num.isEmpty() && right_num.isEmpty()) {
      left_num.add(num);
      return;
    } else {
      if (num <= compute_median(right_num, left_num)) {
        left_num.add(num);
      } else {
        right_num.add(num);
      }
    }
  }

  // Method to remove elements from the PriorityQueues
  private static void remove(PriorityQueue<Integer> right_num, PriorityQueue<Integer> left_num, int num) {
    if (num <= compute_median(right_num, left_num)) {
      left_num.remove(num);
    } else {
      right_num.remove(num);
    }
  }
} 

Sample Output:

Original array: [1, 2, 3, 4, 5, 6, 7, 8, 8]

Value of k: 3

Result: 
2
3
4
5
6
7
8

Pictorial Presentation:

Java exercises: Find the median of the number inside the window

Flowchart:

Flowchart: Java exercises: Find the median of the number inside the window.

Java Code Editor:

Company:  Google

Contribute your code and comments through Disqus.

Previous: Write a Java program to get the number of element in a given array of integers that are smaller than the integer of another given array of integers.
Next: Write a Java program to find the maximum number inside the number in the window (size k) at each moving in a given array of intergers with duplicate numbers. Move the window from the start of the array.

What is the difficulty level of this exercise?

Test your Programming skills with w3resource's quiz.



Follow us on Facebook and Twitter for latest update.