w3resource

C#: Generate all possible permutations of an array


Write a program in C# Sharp to generate all possible permutations of an array using recursion.

Visual Presentation:

C# Sharp Exercises: Generate all possible permutations of an array

Sample Solution:

C# Sharp Code:

using System;

// Class formPermut contains methods to perform permutation operations
class formPermut
{
    // Method to swap two numbers using pass-by-reference
    public void swapTwoNumber(ref int a, ref int b)
    {
        int temp = a;
        a = b;
        b = temp;
    }

    // Method to generate permutations of elements in the array
    public void prnPermut(int[] list, int k, int m)
    {
        int i;
        // If k equals m, it signifies a complete permutation
        if (k == m)
        {
            for (i = 0; i <= m; i++)
                Console.Write("{0}", list[i]); // Print the permutation
            Console.Write(" "); // Space after each permutation
        }
        else
        {
            // Loop to generate permutations
            for (i = k; i <= m; i++)
            {
                swapTwoNumber(ref list[k], ref list[i]); // Swap elements at positions k and i
                prnPermut(list, k + 1, m); // Recursively generate permutations for the remaining elements
                swapTwoNumber(ref list[k], ref list[i]); // Restore the original order for backtracking
            }
        }
    }
}

// Main class RecExercise11 to execute permutation generation
class RecExercise11
{
    public static void Main()
    {
        int n, i;
        formPermut test = new formPermut();
        int[] arr1 = new int[5];

        Console.WriteLine("\n\n Recursion : Generate all possible permutations of an array :");
        Console.WriteLine("------------------------------------------------------------------");

        // Accept user input for the number of elements in the array
        Console.Write(" Input the number of elements to store in the array [maximum 5 digits]: ");
        n = Convert.ToInt32(Console.ReadLine());
        Console.Write(" Input {0} number of elements in the array:\n", n);

        // Accept user input for array elements
        for (i = 0; i < n; i++)
        {
            Console.Write(" element - {0} : ", i);
            arr1[i] = Convert.ToInt32(Console.ReadLine());
        }

        // Display generated permutations of the array elements
        Console.Write("\n The Permutations with a combination of {0} digits are: \n", n);
        test.prnPermut(arr1, 0, n - 1);
        Console.Write("\n\n");
    }
}

Sample Output:

Recursion : Generate all possible permutations of an array :                                                 
------------------------------------------------------------------                                            
 Input the number of elements to store in the array [maximum 5 digits ] :3                                    
 Input 3 number of elements in the array :                                                                    
 element - 0 : 1                                                                                              
 element - 1 : 2                                                                                              
 element - 2 : 3                                                                                              
                                                                                                              
 The Permutations with a combination of 3 digits are :                                                        
123 132 213 231 321 312

Flowchart :

Flowchart: C# Sharp Exercises - Generate all possible permutations of an array.

C# Sharp Code Editor:



Improve this sample solution and post your code through Disqus

Previous: Write a program in C# Sharp to find the Fibonacci numbers for a n numbers of series using recursion.
Next: Write a program in C# Sharp to find the LCM and GCD of two numbers using recursion.

What is the difficulty level of this exercise?

Test your Programming skills with w3resource's quiz.



Follow us on Facebook and Twitter for latest update.