C++ Exercises: Calculate the sum of the series (1*1) + (2*2) + (3*3) + (4*4) + (5*5) + ... + (n*n)
Write a program in C++ to calculate the sum of the series (1*1) + (2*2) + (3*3) + (4*4) + (5*5) + ... + (n*n).
Visual Presentation:
Sample Solution :-
C++ Code :
#include <iostream> // Including the input/output stream header file
using namespace std; // Using the standard namespace to avoid writing std::
int main() // Start of the main function
{
int i, n, sum = 0; // Declaration of integer variables 'i', 'n', and 'sum'
// Display a message to find the sum of the series (1*1) + (2*2) + (3*3) + (4*4) + (5*5) + ... + (n*n)
cout << "\n\n Find the sum of the series (1*1) + (2*2) + (3*3) + (4*4) + (5*5) + ... + (n*n):\n";
cout << "------------------------------------------------------------------------------------\n";
// Prompt the user to input the value for the nth term of the series
cout << " Input the value for nth term: ";
cin >> n; // Read the value entered by the user
for (i = 1; i <= n; i++) // Loop to calculate each term of the series
{
sum += i * i; // Calculate the square of 'i' and add it to the sum
cout << i << "*" << i << " = " << i * i << endl; // Display the current term as i*i
}
// Display the total sum of the series
cout << " The sum of the above series is: " << sum << endl;
return 0; // Indicating successful completion of the program
}
Sample Output:
Find the sum of the series (1*1) + (2*2) + (3*3) + (4*4) + (5*5) + ... + (n*n): ----------------------------------------------------------------------- ------------- Input the value for nth term: 5 1*1 = 1 2*2 = 4 3*3 = 9 4*4 = 16 5*5 = 25 The sum of the above series is: 55
Flowchart:
C++ Code Editor:
Contribute your code and comments through Disqus.
Previous: Write a program in C++ to find the sum of the series 1 + 1/2^2 + 1/3^3 + …..+ 1/n^n.
Next: Write a program in C++ to calculate the series (1) + (1+2) + (1+2+3) + (1+2+3+4) + ... + (1+2+3+4+...+n).
What is the difficulty level of this exercise?
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics