w3resource

C Program: Binary Tree mirroring for a mirror image


Write a C program to create a mirror image of a binary tree. Print both the original and mirrored trees.

Sample Solution:

C Code:

// Including necessary header files
#include <stdio.h>
#include <stdlib.h>

// Structure for a binary tree node
struct TreeNode {
    int data;
    struct TreeNode* left;
    struct TreeNode* right;
};

// Function to create a new node
struct TreeNode* createNode(int value) {
    struct TreeNode* newNode = (struct TreeNode*)malloc(sizeof(struct TreeNode));
    if (newNode != NULL) {
        newNode->data = value;
        newNode->left = NULL;
        newNode->right = NULL;
    }
    return newNode;
}

// Function to insert a node into the binary tree
struct TreeNode* insertNode(struct TreeNode* root, int value) {
    if (root == NULL) {
        return createNode(value);
    }

    if (value < root->data) {
        root->left = insertNode(root->left, value);
    } else if (value > root->data) {
        root->right = insertNode(root->right, value);
    }

    return root;
}

// Function to perform in-order traversal and print elements
void inOrderTraversal(struct TreeNode* root) {
    if (root != NULL) {
        inOrderTraversal(root->left);
        printf("%d ", root->data);
        inOrderTraversal(root->right);
    }
}

// Function to create a mirror image of a binary tree
struct TreeNode* mirrorTree(struct TreeNode* root) {
    if (root == NULL) {
        return NULL;
    }

    // Swap the left and right subtrees
    struct TreeNode* temp = root->left;
    root->left = mirrorTree(root->right);
    root->right = mirrorTree(temp);

    return root;
}

// Function to free the memory allocated for the binary tree
void freeTree(struct TreeNode* root) {
    if (root != NULL) {
        freeTree(root->left);
        freeTree(root->right);
        free(root);
    }
}

int main() {
    struct TreeNode* root = NULL;
    int nodeValue;
    char choice;

    // Insert nodes into the binary tree
    do {
        printf("Input a value to insert into the binary tree (enter 0 to stop): ");
        scanf("%d", &nodeValue);

        if (nodeValue != 0) {
            root = insertNode(root, nodeValue);
        }

    } while (nodeValue != 0);

    // Print the original binary tree
    printf("\nOriginal Binary Tree (In-order Traversal): ");
    inOrderTraversal(root);
    printf("\n");

    // Create and print the mirror image of the binary tree
    struct TreeNode* mirroredRoot = mirrorTree(root);
    printf("\nMirrored Binary Tree (In-order Traversal): ");
    inOrderTraversal(mirroredRoot);
    printf("\n");

    // Free allocated memory
    freeTree(root);
    freeTree(mirroredRoot);

    return 0;
}

Output:

Input a value to insert into the binary tree (enter 0 to stop): 75
Input a value to insert into the binary tree (enter 0 to stop): 45
Input a value to insert into the binary tree (enter 0 to stop): 35
Input a value to insert into the binary tree (enter 0 to stop): 21
Input a value to insert into the binary tree (enter 0 to stop): 11
Input a value to insert into the binary tree (enter 0 to stop): 8
Input a value to insert into the binary tree (enter 0 to stop): 6
Input a value to insert into the binary tree (enter 0 to stop): 0

Original Binary Tree (In-order Traversal): 6 8 11 21 35 45 75

Mirrored Binary Tree (In-order Traversal): 75 45 35 21 11 8 6

Explanation:

In the exercise above,

  • Node Structure (struct TreeNode):
    • Represents a binary tree node with an integer data value, a pointer to the left child, and a pointer to the right child.
  • createNode Function:
    • Creates a new tree node with the given value and returns a pointer to it.
  • insertNode Function:
    • Inserts a new node into the binary tree while maintaining the binary search tree property.
    • If the value is less than the current node's data, it goes to the left subtree; otherwise, it moves to the right subtree.
  • inOrderTraversal Function:
    • Performs in-order traversal of the binary tree, printing the elements in sorted order.
  • mirrorTree Function:
    • Creates a mirror image of the binary tree by swapping the left and right subtrees recursively.
  • freeTree Function:
    • Frees the memory allocated to the binary tree nodes recursively.
  • main Function:
    • Allows the user to input values to build the original binary tree.
    • Prints the original tree using in-order traversal.
    • Creates and prints the mirror image of the tree.
    • Frees the allocated memory for both original and mirrored trees.

Flowchart:

Flowchart: C Program: Binary Tree mirroring for a mirror image.
Flowchart: C Program: Binary Tree mirroring for a mirror image.
Flowchart: C Program: Binary Tree mirroring for a mirror image.

C Programming Code Editor:



Previous: C Program: Binary Tree deletion with BST maintenance.
Next: C Program: Binary Tree level-order traversal.

What is the difficulty level of this exercise?

Test your Programming skills with w3resource's quiz.



Follow us on Facebook and Twitter for latest update.