w3resource

C Exercises: Sort numbers using Multi-key quicksort method

C Programming Searching and Sorting Algorithm: Exercise-23 with Solution

Write a C program that sorts numbers using the Multi-key quicksort method.

Multi-key quicksort, also known as three-way radix quicksort, is an algorithm for sorting strings. This hybrid of quicksort and radix sort was originally suggested by P. Shackleton, as reported in one of C.A.R. Hoare's seminal papers on quicksort, its modern incarnation was developed by Jon Bentley and Robert Sedgewick in the mid-1990s. The algorithm is designed to exploit the property that in many problems, strings tend to have shared prefixes.

Sample Solution:

Sample C Code:

//Sourec: https://bit.ly/3ejSWtP
# include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

// MULTIKEY QUICKSORT

#ifndef min
#define min(a, b) ((a) <= (b) ? (a) : (b))
#endif

#define swap(a, b)      \
    {                   \
        char *t = x[a]; \
        x[a] = x[b];    \
        x[b] = t;       \
    }
#define i2c(i) x[i][depth]

void vecswap(int i, int j, int n, char *x[])
{
    while (n-- > 0)
    {
        swap(i, j);
        i++;
        j++;
    }
}

void ssort1(char *x[], int n, int depth)
{
    int a, b, c, d, r, v;
    if (n <= 1)
        return;
    a = rand() % n;
    swap(0, a);
    v = i2c(0);
    a = b = 1;
    c = d = n - 1;
    for (;;)
    {
        while (b <= c && (r = i2c(b) - v) <= 0)
        {
            if (r == 0)
            {
                swap(a, b);
                a++;
            }
            b++;
        }
        while (b <= c && (r = i2c(c) - v) >= 0)
        {
            if (r == 0)
            {
                swap(c, d);
                d--;
            }
            c--;
        }
        if (b > c)
            break;
        swap(b, c);
        b++;
        c--;
    }
    r = min(a, b - a);
    vecswap(0, b - r, r, x);
    r = min(d - c, n - d - 1);
    vecswap(b, n - r, r, x);
    r = b - a;
    ssort1(x, r, depth);
    if (i2c(r) != 0)
        ssort1(x + r, a + n - d - 1, depth + 1);
    r = d - c;
    ssort1(x + n - r, r, depth);
}

void ssort1main(char *x[], int n) { ssort1(x, n, 0); }

// ssort2 -- Faster Version of Multikey Quicksort

void vecswap2(char **a, char **b, int n)
{
    while (n-- > 0)
    {
        char *t = *a;
        *a++ = *b;
        *b++ = t;
    }
}

#define swap2(a, b)  \
    {                \
        t = *(a);    \
        *(a) = *(b); \
        *(b) = t;    \
    }
#define ptr2char(i) (*(*(i) + depth))

char **med3func(char **a, char **b, char **c, int depth)
{
    int va, vb, vc;
    if ((va = ptr2char(a)) == (vb = ptr2char(b)))
        return a;
    if ((vc = ptr2char(c)) == va || vc == vb)
        return c;
    return va < vb ? (vb < vc ? b : (va < vc ? c : a))
                   : (vb > vc ? b : (va < vc ? a : c));
}
#define med3(a, b, c) med3func(a, b, c, depth)

void inssort(char **a, int n, int d)
{
    char **pi, **pj, *s, *t;
    for (pi = a + 1; --n > 0; pi++)
        for (pj = pi; pj > a; pj--)
        {
            // Inline strcmp: break if *(pj-1) <= *pj
            for (s = *(pj - 1) + d, t = *pj + d; *s == *t && *s != 0; s++, t++)
                ;
            if (*s <= *t)
                break;
            swap2(pj, pj - 1);
        }
}

void ssort2(char **a, int n, int depth)
{
    int d, r, partval;
    char **pa, **pb, **pc, **pd, **pl, **pm, **pn, *t;
    if (n < 10)
    {
        inssort(a, n, depth);
        return;
    }
    pl = a;
    pm = a + (n / 2);
    pn = a + (n - 1);
    if (n > 30)
    {  // On big arrays, pseudomedian of 9
        d = (n / 8);
        pl = med3(pl, pl + d, pl + 2 * d);
        pm = med3(pm - d, pm, pm + d);
        pn = med3(pn - 2 * d, pn - d, pn);
    }
    pm = med3(pl, pm, pn);
    swap2(a, pm);
    partval = ptr2char(a);
    pa = pb = a + 1;
    pc = pd = a + n - 1;
    for (;;)
    {
        while (pb <= pc && (r = ptr2char(pb) - partval) <= 0)
        {
            if (r == 0)
            {
                swap2(pa, pb);
                pa++;
            }
            pb++;
        }
        while (pb <= pc && (r = ptr2char(pc) - partval) >= 0)
        {
            if (r == 0)
            {
                swap2(pc, pd);
                pd--;
            }
            pc--;
        }
        if (pb > pc)
            break;
        swap2(pb, pc);
        pb++;
        pc--;
    }
    pn = a + n;
    r = min(pa - a, pb - pa);
    vecswap2(a, pb - r, r);
    r = min(pd - pc, pn - pd - 1);
    vecswap2(pb, pn - r, r);
    if ((r = pb - pa) > 1)
        ssort2(a, r, depth);
    if (ptr2char(a + r) != 0)
        ssort2(a + r, pa - a + pn - pd - 1, depth + 1);
    if ((r = pd - pc) > 1)
        ssort2(a + n - r, r, depth);
}

void ssort2main(char **a, int n) { ssort2(a, n, 0); }

// TERNARY SEARCH TREE ALGS

typedef struct tnode *Tptr;
typedef struct tnode
{
    char splitchar;
    Tptr lokid, eqkid, hikid;
} Tnode;
Tptr root;

// Insert 1 -- Simple Insertion Algorithm

Tptr insert1(Tptr p, char *s)
{
    if (p == 0)
    {
        p = (Tptr)malloc(sizeof(Tnode));
        p->splitchar = *s;
        p->lokid = p->eqkid = p->hikid = 0;
    }
    if (*s < p->splitchar)
        p->lokid = insert1(p->lokid, s);
    else if (*s == p->splitchar)
    {
        if (*s != 0)
            p->eqkid = insert1(p->eqkid, ++s);
    }
    else
        p->hikid = insert1(p->hikid, s);
    return p;
}

void cleanup1(Tptr p)
{
    if (p)
    {
        cleanup1(p->lokid);
        cleanup1(p->eqkid);
        cleanup1(p->hikid);
        free(p);
    }
}

// Insert 2 -- Faster version of Insert

#define BUFSIZE 1000
Tptr buffer;
int bufn, freen;
void *freearr[10000];
int storestring = 0;

void insert2(char *s)
{
    int d;
    char *instr = s;

    Tptr pp, *p;
    p = &root;
    pp = *p;
    while (pp == *p)
    {
        if ((d = *s - pp->splitchar) == 0)
        {
            if (*s++ == 0)
                return;
            p = &(pp->eqkid);
        }
        else if (d < 0)
            p = &(pp->lokid);
        else
            p = &(pp->hikid);
    }
    for (;;)
    {
        // *p = (Tptr) malloc(sizeof(Tnode));
        if (bufn-- == 0)
        {
            buffer = (Tptr)malloc(BUFSIZE * sizeof(Tnode));
            freearr[freen++] = (void *)buffer;
            bufn = BUFSIZE - 1;
        }
        *p = buffer++;
        pp = *p;
        pp->splitchar = *s;
        pp->lokid = pp->eqkid = pp->hikid = 0;
        if (*s++ == 0)
        {
            if (storestring)
                pp->eqkid = (Tptr)instr;
            return;
        }
        p = &(pp->eqkid);
    }
}
void cleanup2()
{
    int i;
    for (i = 0; i < freen; i++) free(freearr[i]);
}

// Search Algorithms

int search1(char *s)
{
    Tptr p;
    p = root;
    while (p)
    {
        if (*s < p->splitchar)
            p = p->lokid;
        else if (*s == p->splitchar)
        {
            if (*s++ == 0)
                return 1;
            p = p->eqkid;
        }
        else
            p = p->hikid;
    }
    return 0;
}

int search2(char *s)
{
    int d, sc;
    Tptr p;
    sc = *s;
    p = root;
    while (p)
    {
        if ((d = sc - p->splitchar) == 0)
        {
            if (sc == 0)
                return 1;
            sc = *++s;
            p = p->eqkid;
        }
        else if (d < 0)
            p = p->lokid;
        else
            p = p->hikid;
    }
    return 0;
}

// Advanced searching: Partial match, near words

int nodecnt;
char *srcharr[100000];
int srchtop;

void pmsearch(Tptr p, char *s)
{
    if (!p)
        return;
    nodecnt++;
    if (*s == '.' || *s < p->splitchar)
        pmsearch(p->lokid, s);
    if (*s == '.' || *s == p->splitchar)
        if (p->splitchar && *s)
            pmsearch(p->eqkid, s + 1);
    if (*s == 0 && p->splitchar == 0)
        srcharr[srchtop++] = (char *)p->eqkid;
    if (*s == '.' || *s > p->splitchar)
        pmsearch(p->hikid, s);
}

void nearsearch(Tptr p, char *s, int d)
{
    if (!p || d < 0)
        return;
    nodecnt++;
    if (d > 0 || *s < p->splitchar)
        nearsearch(p->lokid, s, d);
    if (p->splitchar == 0)
    {
        if ((int)strlen(s) <= d)
            srcharr[srchtop++] = (char *)p->eqkid;
    }
    else
        nearsearch(p->eqkid, *s ? s + 1 : s, (*s == p->splitchar) ? d : d - 1);
    if (d > 0 || *s > p->splitchar)
        nearsearch(p->hikid, s, d);
}

#define NUMBER_OF_STRING 3

int main(int argc, char *argv[])
{
    char *arr[NUMBER_OF_STRING] = {"apple", "cat", "boy"};

    ssort1main(arr, NUMBER_OF_STRING);

    for (int i = 0; i < NUMBER_OF_STRING; i++)
    {
        printf("%s ", arr[i]);
    }
}

Sample Output:

apple boy cat
--------------------------------
Process exited after 0.3622 seconds with return value 0
Press any key to continue . . .

Flowchart:

Flowchart: C Programming - Sort numbers using Multi-key quicksort method.
Flowchart: C Programming - Sort numbers using Multi-key quicksort method.
Flowchart: C Programming - Sort numbers using Multi-key quicksort method.
Flowchart: C Programming - Sort numbers using Multi-key quicksort method.
Flowchart: C Programming - Sort numbers using Multi-key quicksort method.
Flowchart: C Programming - Sort numbers using Multi-key quicksort method.

C Programming Code Editor:

Previous: Write a C program that sort numbers using Pancake sort method.
Next:Write a C program that sort numbers using Comb sort method.

What is the difficulty level of this exercise?

Test your Programming skills with w3resource's quiz.



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://w3resource.com/c-programming-exercises/searching-and-sorting/c-search-and-sorting-exercise-28.php