Comprehensive Guide to using Streamlit with PostgreSQL
Using Streamlit with PostgreSQL: Integration and Example
Streamlit is an open-source framework for creating web apps with Python, particularly for data science and machine learning applications. Integrating Streamlit with PostgreSQL enables dynamic, interactive web applications that leverage a robust relational database for data storage and management. This guide explains how to connect Streamlit to PostgreSQL, execute queries, and display results.
Setup and Installation
Before starting, ensure the following prerequisites are met:
1. Python Installed: Ensure Python 3.7 or higher is installed.
2. Streamlit Installed: Install Streamlit using pip.
pip install streamlit
3. PostgreSQL Driver: Install the PostgreSQL driver for Python, psycopg2.
pip install psycopg2
Syntax for Connecting Streamlit to PostgreSQL
Below is the basic syntax to connect Streamlit to a PostgreSQL database:
import psycopg2 import streamlit as st # Establish a connection to PostgreSQL conn = psycopg2.connect( dbname="your_db", user="your_user", password="your_password", host="localhost", port="5432" ) # Create a cursor object cur = conn.cursor() # Execute a query cur.execute("SELECT * FROM your_table;") # Fetch results results = cur.fetchall() # Display results using Streamlit st.write(results) # Close the connection cur.close() conn.close()
Step-by-Step Example
1. Sample Database Setup
Create a table in PostgreSQL for demonstration:
Code:
CREATE TABLE sales_data (
id SERIAL PRIMARY KEY,
product_name VARCHAR(100),
sales_amount NUMERIC,
sale_date DATE
);
INSERT INTO sales_data (product_name, sales_amount, sale_date)
VALUES
('Laptop', 1500, '2024-01-01'),
('Mouse', 25, '2024-01-02'),
('Keyboard', 45, '2024-01-03');
2. Streamlit Code Example
The following example demonstrates querying and displaying the sales_data table in a Streamlit app.
Code:
import streamlit as st # Import Streamlit
import psycopg2 # Import psycopg2 for PostgreSQL connection
# Streamlit app title
st.title("Sales Data Dashboard")
# Sidebar inputs for PostgreSQL credentials
st.sidebar.header("Database Connection")
db_name = st.sidebar.text_input("Database Name", "your_db")
db_user = st.sidebar.text_input("Username", "your_user")
db_password = st.sidebar.text_input("Password", type="password")
db_host = st.sidebar.text_input("Host", "localhost")
db_port = st.sidebar.text_input("Port", "5432")
# Connect to PostgreSQL
try:
conn = psycopg2.connect(
dbname=db_name,
user=db_user,
password=db_password,
host=db_host,
port=db_port
)
st.success("Connected to the database!")
# Query the database
query = "SELECT * FROM sales_data;"
cur = conn.cursor()
cur.execute(query)
rows = cur.fetchall()
# Display data in Streamlit
st.header("Sales Data")
st.write("Displaying data from the sales_data table:")
st.dataframe(rows)
# Close the connection
cur.close()
conn.close()
except Exception as e:
st.error(f"Error: {e}")
Explanation:
- Streamlit's st.sidebar is used to gather database credentials dynamically.
- psycopg2.connect establishes a connection to PostgreSQL using user-provided details.
- cur.execute runs the SQL query to fetch data from sales_data.
- st.dataframe renders the table data in a neat, scrollable format.
- Exceptions are caught and displayed as error messages.
1. User Input for Credentials:
2. Connection Setup:
3. Executing Queries:
4. Displaying Data:
5. Error Handling:
Common Issues and Solutions
- Verify that PostgreSQL allows connections from the host using pg_hba.conf.
- Ensure streamlit and psycopg2 are installed in your Python environment.
- Use Streamlit's caching mechanism (@st.cache_data) to improve performance for repeated queries.
1. Authentication Error:
2. Library Import Issues:
3. UI Responsiveness:
Advanced Tips
- Parameterized Queries: Always use placeholders (%s) to prevent SQL injection.
- Real-Time Updates: Use st.experimental_rerun for real-time data refresh.
- Charts Integration: Use st.bar_chart or st.line_chart for graphical data representation.
All PostgreSQL Questions, Answers, and Code Snippets Collection.
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics